Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.54 no.3 México jun. 2008
Investigación
A lowtemperature and seedless method for producing hydrogenfree Si3N4
A.L. LealCruz, M.I. PechCanul*, and J.L. de la Peña
Centro de Investigación y de Estudios Avanzados del IPNUnidad Saltillo, Carr. SaltilloMonterrey Km. 13. Saltillo, 25900 Coahuila, México.
* Corresponding author:
Phone: +52 (844) 4389600 Ext. 9678. Fax: 4389610,
email: martin.pech@cinvestav.edu.mx, martin_pech@yahoo.com.mx
Recibido el 17 de septiembre de 2007
Aceptado el 3 de abril de 2008
Abstract
A simple, seedless method for the synthesis of Si3N4 from a hydrogenfree precursor system (Na2SiF6(s)N2(g)) was developed. From thermodynamic calculations and experimental results it is concluded that the gaseous chemical species SiFx (SiF4,SiF3, SiF2, SiF and Si) formed during the lowtemperature dissociation of Na2SiF6 in a conventional CVD system react insitu with nitrogen to produce Si3N4. Whiskers, fibers, coatings and powders were obtained via the Na2SiF6N2 system at pressures slightly above atmospheric pressure. Not only does the feasibility of the reactions for Na2SiF6 dissociation and Si3N4 formation increase with the temperature but also, once the SiFx chemical species are formed by the former, the latter reaction is even more viable. Amorphous Si3N4 is obtained at temperatures of up to 1173 K while crystalline α and βSi3N4 are formed in the range 12731573 K and with processing times as short as 120 minutes. Optimal conditions for maximizing Si3N4formation were determined.
Keywords: Thermodynamics; CVD; Amorphous Si3N4; α and βSi3N4; gassolid precursors.
Resumen
Se desarrolló un método simple y sin semillas para la síntesis de Si3N4 partiendo de un sistema de precursores libre de hidrógeno (Na2SiF6(s)N2(g)). A partir de cálculos termodinámicos y resultados experimentales se concluye que las especies químicas gaseosas SiFx (SiF4,SiF3, SiF2, SiF and Si) formadas durante la disociación a baja temperatura del Na2SiF6 en un sistema convencional de CVD reaccionan in situ con el nitrogeno para producir Si3N4. Se obtuvieron fibras, fibras cortas discontinuas, recubrimientos y polvos a través del sistema Na2SiF6(s)N2 a presiones ligeramente por encima de la presión atmosférica. Con el incremento en la temperatura no solo aumenta la factibilidad de las reacciones para la disociación del Na2SiF6 y formación del Si3N4, sino también una vez que se han formado las especies SiFx por la primera reacción, la segunda reacción es incluso más factible. El Si3N4 amorfo se obtiene a temperaturas de hasta 1173 K mientras que el Si3N4 cristalino α y β se forman en el rango de temperaturas de 12731573 K y con tiempos de procesamiento tan cortos como 120 minutos. Se determinaron las condiciones óptimas para maximizar la formación del Si3N4.
Descriptores: Termodinámica; CVD; Si3N4amorfo; Si3N4α y β; precursores gassólido.
PACS: 81.15.Gh; 81.20.Ka; 82.60.s
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgements
Authors express their gratitude to Conacyt (National council of Science and Technology, México) for financial support under project No. CB20051/24322. Dr. LealCruz gratefully acknowledges Conacyt's assistance in providing a doctoral scholarship. Authors also wish to thank Mr. Felipe Marquez Torres for technical assistance during the characterization by scanning electron microscopy (SEM).
Referencias
1. F. Galasso, U. Kuntz, and W.J. Croft, J. Am. Ceram. Soc. 55 [8] (1972) 431. [ Links ]
2. K.S. Mazdiyasni and C.M. Cooke, J.A. Ceram, Soc. 56 [12] (1973) 628. [ Links ]
3. K. Hajime, S. Shinichi, and I. Takao, [ Links ] Japan Patent No. JP58115008 (1983).
4. W.C. Lee and S.L. Chung, J. of Materials Research 12 [3] (1997) 805. [ Links ]
5. K. Tang et al., Advanced Materials 11 [8] (1999) 653. [ Links ]
6. A. de Pablos, J. Bermuda, and M.I. Osendi, J. Am. Ceram. Soc. 84 [5] (2001) 1033. [ Links ]
7. Y.G. Cao et al., J. of Crystal Growth 234 (2002) 9. [ Links ]
8. C. Dianying, Z. Baolin, Z. Hanrui, L. Wenlan, and X. Suying, Materials Research Bulletin 37 | (2002) 1481. [ Links ]
9. H. Arik, J. of the Eur. Cer. Soc. 23 (2003) 2005. [ Links ]
10. Y. Gu, L. Chen, and Y. Qian, J. Am. Ceram. Soc. 87 [9] (2004) 1810. [ Links ]
11. I.G. Cano and M.A. Rodríguez, Scripta Materialia 50 (2004) 383. [ Links ]
12. A.L. LealCruz and M.I. PechCanul, Mater. Chem. and Phys. 98 (2006) 27. [ Links ]
13. R.C.G. Swann, R.R. Mehta, and T.P Cauge, J. Electrochem. Soc.: Solid State Science. 114 [7] (1967) 713. [ Links ]
14. E.A. Taft, J. Electrochem. Soc. 118 [8] (1971) 1341. [ Links ]
15. A.K. Sinha, H.J. Levinstein, T.E. Smith, G. Quintana, and S. E. Haszko, J. Electrochem. Soc.: SolidState Science and Technology 125 [4] (1973) 601. [ Links ]
16. A.K. Sinha and T.E. Smith, J. Appl. Phys. 49 [5] (1978) 2756. [ Links ]
17. H. Nakayama and T. Enomoto, Japanese J. of Appl. Phys. 18 [9] (1979) 1773. [ Links ]
18. S. Fujita, M. Nishihara, WL Hoi, and A. Sasaki, Japanese J. of Appl. Phys. 20 [5] (1981) 917. [ Links ]
19. M. Maeada and Y. Arita, J. Appl. Phys. 53 [10] (1982) 6852. [ Links ]
20. A.J. Lowe, M.J. Powell, and S.R. Elliot, J. Appl. Phys. 59 [4] (1986) 1251. [ Links ]
21. Y Manabe and T. Mitsuyu, J. Appl. Phys. 66 [6] (1989) 2475. [ Links ]
22. R.K. Pandey, L.S. Patil, J.P. Bange, and D.K. Gautam, Optical Materials 27 (2004) 139. [ Links ]
23. W.E. Lee and W.M. Rainforth, Ceramic microstructures, property control by processing (Chapman & Hall, New York, 1994). [ Links ]
24. K.L. Choy, Progress in Materials Science 48 (2003) 57. [ Links ]
25. R.C. Weast, C.R.C. Handbook of Chemistry and Physics, 51 ed. (The Chemical Rubber Co., Cleveland OH, 1970). [ Links ]
26. F.S. Galasso, R.D. Veltri, and W.J. Croft, Am. Ceram. Soc. Bull. 57 [4] (1978) 453. [ Links ]
27. M. Vanka and J. Vachuska, Termochimica Acta 36 (1980) 387. [ Links ]
28. P. Chiotti, Journal of LessCommon Metals 80 (1981) 105. [ Links ]
29. Y Kashiwaya and A.W. Cramb, Metall. and Mater. Trans. 33B (2002) 129. [ Links ]
30. A.L. LealCruz and M.I. PechCanul, J. Solid State Ionics 177 (2007) 3529. [ Links ]
31. R. Roy, A Primer on the Taguchi Method, Society of Manufacturing Engineers (Dearborn Michigan, 1990). [ Links ]
32. F.S. Galasso, R.D. Veltri, and W.J. Croft, J. Amer. Ceram. Soc. 57 [4] (1978) 453. [ Links ]
33. J.D. Wu et al.,Thin Solid Films 350 (1999) 101. [ Links ]
34. M. Vila, C. Prieto, P. Miranzo, M.I. Osendi, and R. Ramírez, Surface and Coatings Tech. 151152 (2002) 67. [ Links ]
35. R.K. Pandey, L.S. Patil, Jaspal P. Bange, D.K., J. Optical Materials 27 (2004) 139. [ Links ]
36. B.S. Sahu, P. Srivastava, O.P. Agnihotri, and S.M. Shivaprasad, J. of noncrystalline solids 351 (2005) 771. [ Links ]
37. J.D. McDonald, C.H. Williams, J.C. Thompson, and J.L. Margrave, Advan. Chem. Ser. 72 (1968) 261. [ Links ]