SciELO - Scientific Electronic Library Online

 
vol.54 número3Measurements of local radii of curvature by the retrocollimated interferometric methodNuclear structure for the isotopes ³He and 4He in k+N scattering índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.54 no.3 México jun. 2008

 

Investigación

 

A low–temperature and seedless method for producing hydrogen–free Si3N4

 

A.L. Leal–Cruz, M.I. Pech–Canul*, and J.L. de la Peña

 

Centro de Investigación y de Estudios Avanzados del IPN–Unidad Saltillo, Carr. Saltillo–Monterrey Km. 13. Saltillo, 25900 Coahuila, México.

 

* Corresponding author:
Phone: +52 (844) 438–9600 Ext. 9678. Fax: 438–9610,
e–mail: martin.pech@cinvestav.edu.mx, martin_pech@yahoo.com.mx

 

Recibido el 17 de septiembre de 2007
Aceptado el 3 de abril de 2008

 

Abstract

A simple, seedless method for the synthesis of Si3N4 from a hydrogen–free precursor system (Na2SiF6(s)–N2(g)) was developed. From thermodynamic calculations and experimental results it is concluded that the gaseous chemical species SiFx (SiF4,SiF3, SiF2, SiF and Si) formed during the low–temperature dissociation of Na2SiF6 in a conventional CVD system react in–situ with nitrogen to produce Si3N4. Whiskers, fibers, coatings and powders were obtained via the Na2SiF6–N2 system at pressures slightly above atmospheric pressure. Not only does the feasibility of the reactions for Na2SiF6 dissociation and Si3N4 formation increase with the temperature but also, once the SiFx chemical species are formed by the former, the latter reaction is even more viable. Amorphous Si3N4 is obtained at temperatures of up to 1173 K while crystalline α– and β–Si3N4 are formed in the range 1273–1573 K and with processing times as short as 120 minutes. Optimal conditions for maximizing Si3N4formation were determined.

Keywords: Thermodynamics; CVD; Amorphous Si3N4; α– and β–Si3N4; gas–solid precursors.

 

Resumen

Se desarrolló un método simple y sin semillas para la síntesis de Si3N4 partiendo de un sistema de precursores libre de hidrógeno (Na2SiF6(s)–N2(g)). A partir de cálculos termodinámicos y resultados experimentales se concluye que las especies químicas gaseosas SiFx (SiF4,SiF3, SiF2, SiF and Si) formadas durante la disociación a baja temperatura del Na2SiF6 en un sistema convencional de CVD reaccionan in situ con el nitrogeno para producir Si3N4. Se obtuvieron fibras, fibras cortas discontinuas, recubrimientos y polvos a través del sistema Na2SiF6(s)–N2 a presiones ligeramente por encima de la presión atmosférica. Con el incremento en la temperatura no solo aumenta la factibilidad de las reacciones para la disociación del Na2SiF6 y formación del Si3N4, sino también una vez que se han formado las especies SiFx por la primera reacción, la segunda reacción es incluso más factible. El Si3N4 amorfo se obtiene a temperaturas de hasta 1173 K mientras que el Si3N4 cristalino α y β se forman en el rango de temperaturas de 1273–1573 K y con tiempos de procesamiento tan cortos como 120 minutos. Se determinaron las condiciones óptimas para maximizar la formación del Si3N4.

Descriptores: Termodinámica; CVD; Si3N4amorfo; Si3N4α y β; precursores gas–sólido.

 

PACS: 81.15.Gh; 81.20.Ka; 82.60.–s

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

Authors express their gratitude to Conacyt (National council of Science and Technology, México) for financial support under project No. CB–2005–1/24322. Dr. Leal–Cruz gratefully acknowledges Conacyt's assistance in providing a doctoral scholarship. Authors also wish to thank Mr. Felipe Marquez Torres for technical assistance during the characterization by scanning electron microscopy (SEM).

 

Referencias

1. F. Galasso, U. Kuntz, and W.J. Croft, J. Am. Ceram. Soc. 55 [8] (1972) 431.        [ Links ]

2. K.S. Mazdiyasni and C.M. Cooke, J.A. Ceram, Soc. 56 [12] (1973) 628.        [ Links ]

3. K. Hajime, S. Shinichi, and I. Takao,         [ Links ] Japan Patent No. JP58115008 (1983).

4. W.–C. Lee and S.–L. Chung, J. of Materials Research 12 [3] (1997) 805.        [ Links ]

5. K. Tang et al., Advanced Materials 11 [8] (1999) 653.        [ Links ]

6. A. de Pablos, J. Bermuda, and M.I. Osendi, J. Am. Ceram. Soc. 84 [5] (2001) 1033.        [ Links ]

7. Y.G. Cao et al., J. of Crystal Growth 234 (2002) 9.        [ Links ]

8. C. Dianying, Z. Baolin, Z. Hanrui, L. Wenlan, and X. Suying, Materials Research Bulletin 37 | (2002) 1481.        [ Links ]

9. H. Arik, J. of the Eur. Cer. Soc. 23 (2003) 2005.        [ Links ]

10. Y. Gu, L. Chen, and Y. Qian, J. Am. Ceram. Soc. 87 [9] (2004) 1810.        [ Links ]

11. I.G. Cano and M.A. Rodríguez, Scripta Materialia 50 (2004) 383.        [ Links ]

12. A.L. Leal–Cruz and M.I. Pech–Canul, Mater. Chem. and Phys. 98 (2006) 27.        [ Links ]

13. R.C.G. Swann, R.R. Mehta, and T.P Cauge, J. Electrochem. Soc.: Solid State Science. 114 [7] (1967) 713.        [ Links ]

14. E.A. Taft, J. Electrochem. Soc. 118 [8] (1971) 1341.        [ Links ]

15. A.K. Sinha, H.J. Levinstein, T.E. Smith, G. Quintana, and S. E. Haszko, J. Electrochem. Soc.: Solid–State Science and Technology 125 [4] (1973) 601.        [ Links ]

16. A.K. Sinha and T.E. Smith, J. Appl. Phys. 49 [5] (1978) 2756.        [ Links ]

17. H. Nakayama and T. Enomoto, Japanese J. of Appl. Phys. 18 [9] (1979) 1773.        [ Links ]

18. S. Fujita, M. Nishihara, W–L Hoi, and A. Sasaki, Japanese J. of Appl. Phys. 20 [5] (1981) 917.        [ Links ]

19. M. Maeada and Y. Arita, J. Appl. Phys. 53 [10] (1982) 6852.        [ Links ]

20. A.J. Lowe, M.J. Powell, and S.R. Elliot, J. Appl. Phys. 59 [4] (1986) 1251.        [ Links ]

21. Y Manabe and T. Mitsuyu, J. Appl. Phys. 66 [6] (1989) 2475.        [ Links ]

22. R.K. Pandey, L.S. Patil, J.P. Bange, and D.K. Gautam, Optical Materials 27 (2004) 139.        [ Links ]

23. W.E. Lee and W.M. Rainforth, Ceramic microstructures, property control by processing (Chapman & Hall, New York, 1994).        [ Links ]

24. K.L. Choy, Progress in Materials Science 48 (2003) 57.        [ Links ]

25. R.C. Weast, C.R.C. Handbook of Chemistry and Physics, 51 ed. (The Chemical Rubber Co., Cleveland OH, 1970).        [ Links ]

26. F.S. Galasso, R.D. Veltri, and W.J. Croft, Am. Ceram. Soc. Bull. 57 [4] (1978) 453.        [ Links ]

27. M. Vanka and J. Vachuska, Termochimica Acta 36 (1980) 387.        [ Links ]

28. P. Chiotti, Journal of Less–Common Metals 80 (1981) 105.        [ Links ]

29. Y Kashiwaya and A.W. Cramb, Metall. and Mater. Trans. 33B (2002) 129.        [ Links ]

30. A.L. Leal–Cruz and M.I. Pech–Canul, J. Solid State Ionics 177 (2007) 3529.        [ Links ]

31. R. Roy, A Primer on the Taguchi Method, Society of Manufacturing Engineers (Dearborn Michigan, 1990).        [ Links ]

32. F.S. Galasso, R.D. Veltri, and W.J. Croft, J. Amer. Ceram. Soc. 57 [4] (1978) 453.        [ Links ]

33. J.D. Wu et al.,Thin Solid Films 350 (1999) 101.        [ Links ]

34. M. Vila, C. Prieto, P. Miranzo, M.I. Osendi, and R. Ramírez, Surface and Coatings Tech. 151–152 (2002) 67.        [ Links ]

35. R.K. Pandey, L.S. Patil, Jaspal P. Bange, D.K., J. Optical Materials 27 (2004) 139.        [ Links ]

36. B.S. Sahu, P. Srivastava, O.P. Agnihotri, and S.M. Shivaprasad, J. of non–crystalline solids 351 (2005) 771.        [ Links ]

37. J.D. McDonald, C.H. Williams, J.C. Thompson, and J.L. Margrave, Advan. Chem. Ser. 72 (1968) 261.        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons