Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.54 no.5 México oct. 2008
Investigación
Boundary element analysis for primary and secondary creep problems
E. Pineda Leónª, M.H. Aliabadib and M. OrtizDominguezc
ª Escuela Superior de Ingeniería y Arquitectura, Instituto Politécnico Nacional, U.P. Adolfo López Mateos, Zacatenco, 07738, México D.F., México, email: epinedal@ipn.mx.
b Department of Aeronautical Engineering, Imperial College London, South Kensington campus, London SW7 2AZ.
c Instituto Politécnico Nacional. SEPIESIME, U.P. Adolfo López Mateos, Zacatenco, 07738, México D.F., México.
Recibido el 11 de abril de 2007
Aceptado el 7 de julio de 2008
Abstract
This paper presents the application of the Boundary Element Method to primary and secondary creep problems in a twodimensional analysis. The domain, where the creep phenomena takes place, is discretized into quadratic, quadrilateral, continuous internal cells. The creep analysis is basically applied to metals, that are capable of modeling secondary and primary creep behaviour. This is confined to standard power law creep equations. Constant applied loads are used to demonstrate time effects. Numerical results are compared with solutions obtained from the Finite Element Method (FEM) and references.
Keywords: Creep; boundary element method; finite element method
Resumen
Este artículo presenta la aplicación del Método de Elementos de Frontera a problemas del creep primarios y secundarios para un análisis en dos dimensiones. El dominio, donde el fenómeno del creep se genera, es dicretizado con celdas internas cuadriláteras cuadráticas continuas. El análisis del creep es básicamente aplicado a metales, que son capaces de modelar el comportamiento primario y secundario del creep. Dicho comportamiento está limitado a ecuaciones de la ley de potencia del creep. Se aplican cargas constantes para demostrar los efectos del tiempo. Los resultados numéricos son comparados con soluciones obtenidas del Método de Elementos Finitos y referencias.
Descriptores: Creep; elementos de frontera; elementos finitos.
PACS: 62.20.Hg; 43.20.Rz; 47.1 l.Fg
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgements
The authors wish to thank Dr. Alejandro Rodriguez Castellanos for his valuable cooperation in this paper.
References
1. M.H. Aliabadi, The Boundary Element Method. Applications in Solids and Structures (Vol. 2. John Wiley & Sons, Ltd, West Sussex, England 2002). [ Links ]
2. O.C. Zienkiewicz, The Finite Element Method, McGrawHill (New York, 1971). [ Links ]
3. J.T. Oden, Finite Elements of Nonlinear Continua (McGrawHill, New York, 1972). [ Links ]
4. I. Fredholm, Acta Mathematica 27390 (1903) 365. [ Links ]
5. S.G. Mikhlin, Integral Equation (Pergamon Press, London, 1957). [ Links ]
6. V.D. Kupradze, Potential Methods in the Theory of Elasticity (Israel Programms for Scientific Translations, Jerusalem, 1965). [ Links ]
7. T.A. Cruse, International Journal of Solids and Structures 5 (1969) 1259. [ Links ]
8. M.A. Jaswon, Proceedings of the Royal Society of London, Series A 275 (1963) 23. [ Links ]
9. J.L. Hess and A.M.O. Smith, Calculation of Potential Flows About Arbitrary Bodies, Progress in Aeronautical Sciences, 8 (Pergamon Press, London 1967). [ Links ]
10. C.E. Massonet, In Stress Analysis (Chapter 10, Wiley, London (1965) 198. [ Links ]
11. F. J. Rizzo, Quarter Journal of Applied Mathematics 25 (1967) 83. [ Links ]
12. T.A. Cruse, Mathematical Foundations of The Boundary Integral Equation Method in Solid Mechanics. Report No. AFOSRTR771002, Pratt and Whitney Aircraft Group (1977). [ Links ]
13. J.C. Lachat, A Further Development of the Boundary Integral Techniques for Elastosatics (PhD thesis, University of Southampton, (1975). [ Links ]
14. J.C. Lachat and J.O. Watson, International Journal for Numerical Methods in Engineering 10 (1976) 991. [ Links ]
15. J.L. Swedlow and T.A. Cruse, International Journal of Solids and Structures 7 (1971) 1673. [ Links ]
16. P. Riccardella, An Implementation of the Boundary Integral Technique for plane problems of Elasticity and Elastoplasticity (PhD Thesis, Carnegie Mellon University, Pitsburg, PA 1973). [ Links ]
17. P.K. Banerjee and G.C.W. Mustoe, The boundary element method for twodimensional problems of elastoplasticity. Recent Advances in Boundary Element Methods, C.A. Brebbia (ed.), (Pentech Press, Plymouth, Devon, UK, 1978) 283. [ Links ]
18. P.S. Theocaris and E. Marketos, Journal of Mechanics and Physics of Solids 12 (1964) 377. [ Links ]
19. J.C.F. Telles, C. Brebbia, Appl. Math. Modelling 3 (1979) 466. [ Links ]
20. V.M.A. Leitao, Topics in Engineering 21, (Computational Mechanics Publications, U.K. 1994). [ Links ]
21. A.A. Becker, and T.H. Hyde, NAFEMS report (1993) R0027. [ Links ]
22. E. Pineda, Dual Boundary Element Analysis for Creep Fracture (PhD thesis, University of London, 2006). [ Links ]