Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.54 supl.1 México feb. 2008
Calculation of Response matrix of a BSS with 6LiI scintillator
H.R. VegaCarrillo* a , b I. Donairec, E. Gallegoc, E. ManzanaresAcuñaª, A. Lorentec, M.P. Iñiguezd, A. MartinMartind, and J.L. GutierrezVillanuevad
ª Unidades Académicas de Estudios Nucleares e Ingeniería Eléctrica * Correspondig author email: fermineutron@yahoo.com
b Universidad Autónoma de Zacatecas, apartado postal # 336, 98000 Zacatecas, Zac. México.
c Departamento de Ingeniería Nuclear de la Universidad Politécnica de Madrid, Spain.
d Departamento de Física Teórica, Atómica y Optica, Laboratorio LIBRA de la Universidad de Valladolid, Spain
Recibido el 14 de mayo de 2007
Aceptado el 26 de octubre de 2007
Abstract
The response matrix of a Bonner sphere spectrometer was calculated using MCNP 4C and MCNPX 2.4.0 codes. As thermal neutron detector a 0.4 cm x 0.4 cm 6 LiI which is located at the center of a set of polyethylene spheres. The response was calculated for 0, 2, 3, 5, 8, 10, and 12 inchesdiameter polyethylene spheres for neutrons whose energy goes from 2.50E(8) to 100 MeV. The response matrix was calculated for 23 neutron energies, the response functions were energyinterpolated to 51 neutron energies and were compared with a matrix response reported in the literature, in this comparison both response matrices are in agreement. The main differences were found in the bare detector and are attributed to the irradiation conditions and cross sections, for the other detectors the differences are due to the cross sections libraries.
Keywords: Monte Carlo; 6LiI scintillator; Bonner sphere neutron spectrometer.
Resumen
Se calculó la matriz de respuesta de un espectrómetro de Esferas de Bonner utilizando los códigos Monte Carlo MCNP 4C y MCNPX 2.4.0. El detector de neutrones térmicos del espectrómetro es un centellador cilindrico, 0.4 cm X 0.4 cm, de 6LiI, que se ubica en el centro de esferas de polietileno. La respuesta se obtuvo para esferas cuyo diametro es 0, 2, 3, 5, 8, 10 y 12 pulgadas y para fuentes monoenergéticas de neutrones de 2.50E(8) to 100 MeV. La matriz se calculó para 23 fuentes monoenergéticas, las funciones de respuesta se interpolaron a 51 energías que se compararon con las correspondientes reportadas en la literatura. Se encontró que ambas matrices son coincidentes, excepto para neutrones de baja y alta energía; esta diferencia es atribuida a las condiciones de irradiación utilizadas en ambos estudios y a las secciones eficaces.
Descriptores: Monte Carlo; centellador 6LiI; espectrometro de esferas de Bonner.
PACS: 24.10.Lx; 29.40.Mc; 29.30.h
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgments
This work is part of the SYNAPSIS project supported by CONACyT (México) under contract SEP2004C0146893.
References
1. J. Chadwick, Nature 129 (1932) 312. [ Links ]
2. R.L. Bramblett, R.I. Ewing, and T.W. Bonner, Nuclear Instruments and Methods 9 (1960) 1. [ Links ]
3. F.D. Brooks and H. Klein, Nuclear Instruments and Methods in Physics Research A 476 (2002) 1. [ Links ]
4. M. Kralik et al., Radiation Protection Dosimetry 70 (1997) 279. [ Links ]
5. A.V. Sannikov, V. Mares, and H. Schraube, Radiation Protection Dosimetry 70 (1997) 291. [ Links ]
6. V. Vylet, Nuclear Instruments and Methods in Physics Research A 476 (2002) 26. [ Links ]
7. E. Gallego, A. Lorente, and H.R. VegaCarrillo, Radiation Protection Dosimetry 110 (2004) 73. [ Links ]
8. H.R. VegaCarrillo, Radiation Measurements 35 (2002) 251. [ Links ]
9. J.E. Sweezy, N.E. Hertel, K.G. Veinot, R.A. and Karam, Radiation Protection Dosimetry 78 (1998) 263. [ Links ]
10. R. Barquero, R. Méndez, M.P. Iñiguez, H.R. VegaCarrillo, and M. Voytchev, Radiation Protection Dosimetry 101 (2002) 493. [ Links ]
11. D.J. Thomas, A.G. Bardell, and E.M. Macaulay, Nuclear Instruments and Methods in Physics Research A 476 (2002) 31. [ Links ]
12. M.P. Dhairyawan, P.S. Nagarajan, and G. Venketaraman, Nuclear Instruments and Methods 175 (1980) 561. [ Links ]
13. A.V. Alevra and D.J. Thomas, Radiation Protection Dosimetry 107 (2003) 37. [ Links ]
14. B. Wiegel and A.V. Alevra, Nuclear Instruments and Methods in Physics Research A 476 (2002) 36. [ Links ]
15. H.R. VegaCarrillo, E. ManzanaresAcuña, V.M. HernandezDavila, and G.A. Mercado, Rev. Mex. Fis. 51 (2005) 47. [ Links ]
16. H.R. VegaCarrillo et al., Rev. Mex. Fis. 51 (2005) 494. [ Links ]
17. N.E. Hertel and J.W. Davidson, Nuclear Instruments and Methods in Physics Research A 238 (1985) 509. [ Links ]
18. V. Mares and H. Schraube, Nuclear Instruments and Methods in Physics Research A 337 (1994) 461. [ Links ]
19. H.R. VegaCarrillo, B.W. Wehring, K.G. Veinot, and N.E. Hertel, Radiation Protection Dosimetry 81 (1999) 133. [ Links ]
20. BNL. (On line). Nacional Nuclear Data Center http://www.nndc.bnl.gov; Evaluated Nuclear Data File ENDF/BVII.0 (USA, 2006). Brookhaven National Laboratory. (Consult: July 25th, 2006). [ Links ]
21. J.F. Briesmeister, (editor), MCNPTM A general Monte Carlo Nparticle transport code, Los Alamos National Laboratory Report LA13709M (2000). [ Links ]
22. J.S. Hendricks, S.C. Frankle, and J.D. Court, ENDF/BVI Data for MCNPTM, Los Alamos National Laboratory Report LA12891 (1994). [ Links ]
23. L.S. Waters, (editor), MCNPX User's manual version 2.4.0. Los Alamos National Laboratory Report LACP02408 (2002). [ Links ]
24. M.B. Chadwick et al., Nuclear Science and Engineering 131 (1999) 293. [ Links ]
25. E. Lemley, Calculation of Bonner sphere neutron spectrometer response functions using the Monte Carlo computer code MCNP, PhD dissertation, University of Arkansas (1996). [ Links ]
26. S.M. Seltzer and M.J. Berger, International Journal of Applied Radiation and Isotopes 33 (1982) 1189. [ Links ]