Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.54 supl.3 México dic. 2008
The threshold anomaly from the simultaneous calculation of elastic scattering and fusion cross sections for the systems 9Be+144Sm and 9Be+64 Zn for energies around the barrier
A.G. Camachoa,*, E.F. Aguileraª, E.M. Quirozª, P.R.S. Gomesb and J. Lubianb
ª Departamento del Acelerador, Instituto Nacional de Investigaciones Nucleares, Apartado Postal 181027, México, D.F. 11801, México.
b Instituto de Fisica, Universidade Federal Fluminenese, Avenida Litoranea s/n, Gragoatá, Niterói RJ 24210340, Brazil.
Correspondence:
* email: agc@nuclear.inin.mx
Recibido el 20 de febrero de 2008
Aceptado el 4 de julio de 2008
Abstract
The energy dependence of the optical potential is used to study the threshold anomaly for reactions with the weakly bound projectile 9Be on 144Sm and 64Zn for energies around the Coulomb barrier. The energy dependent potential parameters are obtained from a simultaneous X2 analysis of elastic scattering and fusion data. There are signatures that in fact, the socalled breakup threshold anomaly shows up for these systems. This findin is in agreement with other calculations involving weakly bound projectiles.
Keywords: Nuclear reactions; weakly bound nuclei; threshold anomaly.
Resumen
La dependencia con la energía del potencial óptico se usa para determinar la presencia de la Anomalía de Umbral en reacciones entre el proyectil débilmente ligado 9Be con 144Sm y 64Zn a energías alrededor de la barrera Coulombiana. Los parámetros del optencial óptico se encuentran mediante un ajuste X2 de los datos experimentales de dispersión elástica y fusión completa. Los resultados demuestran que, en realidad la Anomalía de Umbral por Rompimiento aparece en estas reacciones. Esta conclusión concuerda con los resultados de otras reacciones en que intervienen projectiles debilmente ligados.
Descriptores: Reacciones nucleares; núcleos débilmente ligados; anomalía de umbral.
PACS: 24.10,i; 25.70.Jj; 23.23.+x; 56.65.Dy
DESCARGAR ARTÍCULO EN FORMATO PDF
References
1. L.F. Canto, P.R.S. Gomes, R. Donangelo, and M.S. Hussein, Phys. Rep. 424 (2006) 1. [ Links ]
2. M.S. Hussein, P.R.S. Gomes, J. Lubian and L.C. Chamon, Phys. Rev. C 73 (2006) 044610. [ Links ]
3. M.S. Hussein, P.R.S. Gomes, J. Lubian and L.C. Chamon, Phys. Rev. C 76 (2007) 019902 (E). [ Links ]
4. P.R.S. Gomes, et al., J. Phys. G 31 (2005) S1669. [ Links ]
5. C. Mahaux, H. Ngô and G.R. Satchler, Nucl. Phys. A 449 (1986) 354. [ Links ]
6. J. Lubian, et al., Phys. Rev. C 64 (2001) 027601. [ Links ]
7. J. Lubian, et al., Nucl. Phys. A 791 (2007) 24. [ Links ]
8. G.R. Satchler, Phys. Rep. 199 (1991) 147. [ Links ]
9. M.A. Nagarajan, C.C. Mahaux, G.R. Satchler, Phys. Rev. Lett. 54 (1985) 1136. [ Links ]
10. J.O. Fernández Niello, et al., Nucl. Phys. A787 (2007) 484c. [ Links ]
11. J.M. Figueira et al., Phys. Rev. C 75 (2007) 017602. [ Links ]
12. S.B. Moraes, et al., Phys. Rev. C 61, (2000) 064608. [ Links ]
13. I. Padron et al., Phys. Rev. C 66 (2002) 044608. [ Links ]
14. P.R.S. Gomes, et al., Phys. Rev. C 71, (2005) 034608. [ Links ]
15. P.R.S. Gomes, et al., Phys. Lett. B 601 (2004) 20. [ Links ]
16. P.R.S. Gomes, et al., Phys. Rev. C 73 (2006) 064606. [ Links ]
17. P.R.S. Gomes, et al., Phys. Lett. B 634, (2006) 356. [ Links ]
18. T. Udagawa, B.T. Kim and T. Tamura, Phys. Rev. C 32 (1985) 124. [ Links ]
19. T. Udagawa, T. Tamura, and B.T. Kim, Phys. Rev. C 39 (1989) 1840. [ Links ]
20. A.G. Camacho, E.M. Quiroz, and T. Udagawa, Nucl. Phys. A 635 (1998) 346. [ Links ]
21. A.G. Camacho and T. Udagawa Rev. Mex. Fis. 44 (1998) 85. [ Links ]
22. A.G. Camacho, E.F. Aguilera, and A.M. Moro, Nucl. Phys A 762 (2005) 216. [ Links ]
23. A.G. Camacho, E.F. Aguilera, P.R.S. Gomes, J. Lubian and I. Padron, Nucl. Phys. A 787 (2007) 275c. [ Links ]
24. A.G. Camacho, P.R.S. Gomes, J. Lubian. E.F. Aguilera and I. Padron, Phys. Rev. C 76 (2007) 044609. [ Links ]
25. G.R. Satchler and W.G. Love, Phys. Rep. 55 (1979) 18. [ Links ]
26. G.R. Satchler and W.G. Love, Phys. Rep. 55 (1979) 183. [ Links ]
27. P.H. Stelson, Phys. Lett. B 205 (1988) 190; [ Links ] P.H. Stelson, H.J. Kim, M. Beckermanm, D. Shapira and R.L. Robinson, Phys. Rev. C 41 (1990) 1584. [ Links ]
28. I.J. Thompson, Comput. Phys. Rep. 7 (1988) 167. [ Links ]
29. C.Y. Wong, Phys. Rev. Lett. 31 (1973) 766. [ Links ]
30. N. Keeley, et al, Nucl. Phys. A 571 (1994) 326. [ Links ]
31. N. Keeley and K. Rusek, Phys. Lett. B 427 (1998) 1. [ Links ]
32. W.Y. So, S.W. Hong, B.T. Kim, and T. Udagawa, Phys. Rev. C 69 (2004) 064606. [ Links ]
33. A.M.M. Maciel, et al., Phys. Rev. C 59 (1999) 2103. [ Links ]
34. J.M. Figueira, et al., Phys. Rev. C 73 (2006) 054603. [ Links ]
35. P.R.S. Gomes, et al., Phys. Rev. C 70, (2004) 054605. [ Links ]
36. C. Signorini, et al., Phys. Rev. C 61 (2000) 061603 (R). [ Links ]
37. M. Dasgupta, et al., Phys. Rev. Lett. 82 (1999) 1395. [ Links ]
38. M. Dasgupta, et al., Phys. Rev. C 66 (2002) 041602 (R). [ Links ]
39. M. Dasgupta, et al., Phys. Rev. C 70 (2004) 024606. [ Links ]
40. R. Raabe, et al., Nature 431 (2004) 823. [ Links ]
41. E. Crema, L.C. Chamon, and P.R.S. Gomes, Phys. Rev. C 72 (2005) 034610. [ Links ]
42. E. Crema, P.R.S. Gomes, and L.C. Chamon, Phys. Rev. C 75 (2007) 037601. [ Links ]
43. E. Crema, P.R.S. Gomes, and L.C. Chamon, Nucl. Phys. A 787 (2007) 225c. [ Links ]
44. G.V. Marti et al., Phys. Rev. C 71 (2005) 027602. [ Links ]
45. R.M. Anjos, et al., Phys. Lett. B 534 (2002) 45. [ Links ]
46. A. Mukherjee, et al., Phys. Lett. B 526 (2002) 295. [ Links ]