SciELO - Scientific Electronic Library Online

 
vol.55 número6Some studies on safe maximum packing of live agents in crowds or containersCapillary penetration in cells with periodical corrugations índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.55 no.6 México dic. 2009

 

Investigación

 

Information–theoretical analysis of gene expression data to infer transcriptional interactions

 

K. Baca–López ª, b, E. Hernández–Lemus ª, c, and M. Mayorga b

 

ª Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4124, Torre Zafiro 2, Piso 6 Col. Ex Rancho de Anzaldo, Álvaro Obregón 01900, México, D.F., México.

b Facultad de Ciencias, Universidad Autónoma del Estado de México, Av. Instituto Literario 100 Ote. Centro 50000, Toluca, Estado de México, México.

c Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Torre de Ingeniería, Piso 6, Circuito Escolar s/n Ciudad Universitaria, Coyoacán, 04510, México, D.F., México.

 

Recibido el 4 de agosto de 2009
Aceptado el 6 de octubre de 2009

 

Abstract

The majority of human diseases are related with the dynamic interaction of many genes and their products as well as environmental constraints. Cancer (and breast cancer in particular) is a paradigmatic example of such complex behavior. Since gene regulation is a non–equilibrium process, the inference and analysis of such phenomena could be done following the tenets of non–equilibrium physics. The traditional programme in statistical mechanics consists in inferring the joint probability distribution for either microscopic states (equilibrium) or mesoscopic–states (non–equilibrium), given a model for the particle interactions (e.g. the potentials). An inverse problem in statistical mechanics, in the other hand, is based on considering a realization of the probability distribution of micro– or meso–states and used it to infer the interaction potentials between particles. This is the approach taken in what follows. We analyzed 261 whole–genome gene expression experiments in breast cancer patients, and by means of an information–theoretical analysis, we deconvolute the associated set of transcriptional interactions, i.e. we discover a set of fundamental biochemical reactions related to this pathology. By doing this, we showed how to apply the tools of non–linear statistical physics to generate hypothesis to be tested on clinical and biochemical settings in relation to cancer phenomenology.

Keywords: Cancer genomics; information theory; molecular networks.

 

Resumen

La mayoría de las enfermedades humanas están relacionadas con la interacción de muchos genes, y con condicionantes ambientales, lo que las hace fenómenos complejos. El análisis de las interacciones bioquímicas relacionadas se basa frecuentemente en la consideración de las relaciones de regulación genética. Puesto que la regulación genética es un proceso fuera del equilibrio, la inferencia y el análisis de ésta puede hacerse siguiendo los principios de la termodinámica irreversible y la mecánica estadística fuera del equilibrio. El enfoque tradicional de la mecánica estadística es inferir la distribución de probabilidad conjunta para los estados del sistema en términos de un modelo para las interacciones. Un problema inverso en mecánica estadística consiste en considerar una realización de la distribución de probabilidad y emplearla para inferir las interacciones entre las partículas. Tomamos este enfoque para analizar 261 experimentos de expresión de mRNA de genoma completo, en pacientes con cáncer de mama y, a través de una medida basada en la teoría de la información descubrir el conjunto de interacciones transcripcionales asociadas. Mostramos como aplicar las herramientas de la física estadística no–lineal para generar hipótesis (es decir, el conjunto de interacciones inferidas) que pueden ser probadas en ensayos clínicos y bioquímicos con relación a la fenomenología del cáncer.

Descriptores: Genómica del cáncer; teoría de la información; redes moleculares.

 

PACS: 87.10.Vg; 87.16.Yc; 87.18.Cf; 89.75.Hc; 89.70.Cf

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Referencias

1. M.V. Rockmanm and L. Kruglyak, Nat. Rev. Genet. 7 (2006) 862.        [ Links ]

2. S. Komili and S. Silver, Nat. Rev. Genet. 9 (2008) 38.        [ Links ]

3. E. Hernández–Lemus, Jou. of Non–equil. Thermodyn. (2009), (in press)        [ Links ]

4. D.J. Lockhart et. al., Nature Biotech. 14 (1996) 1675.        [ Links ]

5. R.A. Irizarry et. al., Biostatistics 4 (2003) 249.        [ Links ]

6. R.A. Irizarry et. al., Nucleic Acids Research, 31 (2003) 4        [ Links ]

7. B.M. Bolstad, R.A. Irizarry, M. Astrand, and T.P. Speed, Bioinformatics 19 (2003) 185.        [ Links ]

8. http://cran.r-project.org/        [ Links ]

9. http://genomequebec.mcgill.ca/FlexArray/        [ Links ]

10. J.R. Stevens and R.W. Doerge, Comp Funct Genom 6 116 (2005) 122.        [ Links ]

11. J.R. Stevens and R.W. Doerge, BMC Bioinformatics 6 (2005) 57. doi: 10.1186/1471–2105–6–57.        [ Links ]

12. J.K. Choi, U. Yu, S. Kim, and O.J. Yoo, Bioinformatics 19 (2003) i84.        [ Links ]

13. D. Hekstra, A.R. Taussig, M. Magnasco, and F. Naef, Nucleic Acids Research 31 (2003) 1962.        [ Links ]

14. Y. Tu, G. Stolovitzky, and U. Klein, Proc. Natl. Acad. Sci. USA 99 (2002) 14031.        [ Links ]

15. P. Baldi and A.D. Long, Bioinformatics (17) (2001) 509.        [ Links ]

16. A.A. Margolin et. al., BMC Bioinformatics 7 (2006). doi:10.1186/1471–2105–7–S1–S7.        [ Links ]

17. E.T. Jaynes, Phys. Rev. 106 (1957) 620.        [ Links ]

18. C. Cercignani, R. Illner, and M. Pulvirenti, Applied Mathematical Sciences 106 (Springer–Verlag 1994).        [ Links ]

19. H. Li and M. Zhan, EURASIP Journal on Bioinformatics and Systems Biology, (2007) doi:10.1155/2007/49478.        [ Links ]

20. A.C. Yang, S.S. Hseu, H.W. Yien, A.L. Goldberger, and C.K. Peng, Phys Rev Lett 90 (2003) 108103.        [ Links ]

21. N. van Kampen, Stochastic Processes in Physics and Chemistry (North Holland, Elsevier, The Netherlands, 1997).        [ Links ]

22. G.K. Zipf, Human Behavior and the Principle of Least Effort (Addison–Wesley Press Inc., Cambridge, 1949).

23. B.B. Mandelbrot, An informational theory of the statistical structure of languages, in Communication Theory, ed. W. Jackson, Betterworth, (1953) 486.        [ Links ]

24. H. Stanley et. al.,Physica A 273 (1999) 1.        [ Links ]

25. B. Cantú–Bolán and E. Hernández–Lemus, Rev. Mex. Fís. E 51 (2005)118.        [ Links ]

26. L. Dagdug, J. Álvarez–Ramírez, C. López, R. Moreno, and E. Hernández–Lemus, Physica A 383 (2007) 570.        [ Links ]

27. SASH1: a candidate tumor suppressor gene on chromosome 6q24.3 is downregulated in breast cancer. Oncogene. 2003 May 15;22 (19): 2972–83.        [ Links ]

28. Glutathione S–transferase M1, M3, P1, and T1 genetic polymorphisms and susceptibility to breast cancer. Cancer Epidemiol Biomarkers Prev. 2001 Mar;10(3):229–36.        [ Links ]

29. Transformation of MCF–10A cells by random mutagenesis with frameshift mutagen ICR191: a model for identifying candidate breast–tumor suppressors. Mol Cancer. 2008 Jun 5;7:51.        [ Links ]

30. Candidate tumor–suppressor genes on chromosome arm 8p in early–onset and high–grade breast cancers. Oncogene. 2004 Jul 22;23(33):5697–702.        [ Links ]

31. M. Katohand M. Katoh, Int J Oncol (2006) 28 1243.        [ Links ]

32. Chromosome 5 imbalance mapping in breast tumors from BRCA1 and BRCA2 mutation carriers and sporadic breast tumors. Int J Cancer. 2006 Sep 1;119(5):1052–60.        [ Links ]

33. Genetic screen for chromosome instability in mice: Mcm4 and breast cancer. Cell Cycle. 2007 May 15;6(10):1135–40. Epub 2007 May 5.        [ Links ]

34. CMTM5 exhibits tumor suppressor activities and is frequently silenced by methylation in carcinoma cell lines. Clin Cancer Res. 2007 Oct 1;13(19):5756–62.        [ Links ]

35. Expression of centromere protein F (CENP–F) associated with higher FDG uptake on PET/CT, detected by cDNA microarray, predicts high–risk patients with primary breast cancer. BMC Cancer. 2008 Dec 22;8:384.        [ Links ]

36. Relevance of breast cancer antiestrogen resistance genes in human breast cancer progression and tamoxifen resistance. J Clin Oncol. 2009 Feb 1;27(4):542–9. Epub 2008 Dec 15.        [ Links ]

37. Cdc7–Dbf4 kinase overexpression in multiple cancers and tumor cell lines is correlated with p53 inactivation. Neoplasia. 2008 Sep; 10(9): 920–31.        [ Links ]

38. M. Scintu et. al., Genomic instability and increased expression of BUB1B and MAD2L1 genes in ductal breast carcinoma, Cancer Lett. 2007 Sep 8;254(2):298–307. Epub 2007 May 10.        [ Links ]

39. http://www.geneontology.org        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons