SciELO - Scientific Electronic Library Online

 
vol.57 número5Electronic heat transport for a multiband superconducting gap in Sr2RuO4The Jones vector as a spinor and its representation on the Poincaré sphere índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.57 no.5 México oct. 2011

 

Investigación

 

Oriented matroid theory and loop quantum gravity in (2+2) and eight dimensions

 

J.A. Nieto

 

Mathematical, Computational & Modeling Science Center, Arizona State University, PO Box 871904, Tempe, AZ 85287, USA. Facultad de Ciencias Físico-Matemáticas de la Universidad Autónoma de Sinaloa, 80010, Culiacán Sinaloa, México. Departamento de Investigación en Física de la Universidad de Sonora, 83000, Hermosillo Sonora, México.

 

Recibido el 18 de noviembre de 2010;
aceptado el 26 de julio de 2011

 

Abstract

We establish a connection between oriented matroid theory and loop quantum gravity in (2+2) (two time and two space dimensions) and 8-dimensions. We start by observing that supersymmetry implies that the structure constants of the real numbers, complex numbers, quaternions and octonions can be identified with the chirotope concept. This means, among other things, that normed divisions algebras, which are only possible in 1,2, 4 or 8-dimensions, are linked to oriented matroid theory. Therefore, we argue that the possibility for developing loop quantum gravity in 8-dimensions must be taken as important alternative. Moreover, we show that in 4-dimensions, loop quantum gravity theories in the (1+3) or (0+4) signatures are not the only possibilities. In fact, we show that loop quantum gravity associated with the (2+2)-signature may also be an interesting physical structure.

Keywords: Loop quantum gravity; eight dimensions; (2+2)-dimensions.

 

PACS: 04.60.-m; 04.65.+e; 11.15.-q; 11.30.Ly

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Referencias

1. A. Ashtekar and J. Lewandowski, Class. Quant. Grav. 21 (2004) R53; gr-qc/0404018.         [ Links ]

2. T. Jacobson and L. Smolin, Class. Quant. Grav. 5 (1988) 583.         [ Links ]

3. J. Samuel, Pramana J. Phys. 28 (1987) L429.         [ Links ]

4. J. A. Nieto, Class. Quant. Grav. 22 (2005) 947; e-Print: hep-th/0410260.         [ Links ]

5. J. A. Nieto, Class. Quant. Grav. 23 (2006) 4387; e-Print: hep-th/0509169.         [ Links ]

6. J. A. Nieto, Gen. Rel. Grav. 39 (2007) 1109.         [ Links ]

7. J. A. Nieto, "Towards a background independent quantum gravity in eight dimensions"; e-Print: arXiv:0704.2769.         [ Links ]

8. A.R. Dundarer, F. Gursey and C.H. Tze, J. Math. Phys. 25 (1984) 1496.         [ Links ]

9. A. R. Dundarer and F. Gursey, J. Math. Phys. 32 (1991) 1178.         [ Links ]

10. E. Corrigan, C. Devchand, D.B. Fairlie and J. Nuyts, Nucl. Phys.B 214 (1983)452.         [ Links ]

11. H. Nishino and S. Rajpoot, JHEP 0404 (2004) 020; hep-th/0210132.         [ Links ]

12. H. Nishino and S. Rajpoot, Phys. Lett. B564 (2003) 269; hep-th/0302059.         [ Links ]

13. J. C. Baez, Bull. Amer. Math. Soc. 39 (2002) 145.         [ Links ]

14. R. Bott and J. Milnor, Bull. Amer. Math. Soc. 64 (1958) 87.         [ Links ]

15. M. Kervair, Proc. Nat. Acad. Sci. 44 (1958) 286.         [ Links ]

16. S. Okubo, "Introduction to Octonions and Other Non-Associative Alebras in Physics", (Cambridge University Press, 1995).         [ Links ]

17. I. L. Kantor and A. S. Solodovnikov, "Hypercomplex Numbers; An Elementary Introduction to Algebras" (Springer-Verlag, NY, 1989).         [ Links ]

18. J. A. Nieto and L. N. Alejo-Armenta, Int. J. Mod. Phys. A 16 (2001) 4207; hep-th/0005184.         [ Links ]

19. J. A. Wolf, J. Diff. Geom. 6 (1972) 317;         [ Links ] J. Diff. Geom. 7 (1972) 19.         [ Links ]

20. T. Kugo and P. Townsend, Nucl. Phys. B221 (1983) 357.         [ Links ]

21. D. Grumiller, W. Kummer, and D.V. Vassilevich, Phys. Rept. 369 (2002) 327, hep-th/0204253.         [ Links ]

22. J. A. Nieto, Nuovo Cim. B 120 (2005) 135; e-Print: hep-th/0410003.         [ Links ]

23. C. Hull, JHEP 9811 (1998) 017;         [ Links ] e-Print: hep-th/9807127.

24. M. P. Blencowe and M. J. Duff, Nucl. Phys. B310 (1988) 387.         [ Links ]

25. E. Witten, Phys. Rev. D 44 (1991) 314.         [ Links ]

26. I. Bars, Class. Quant. Grav. 18 (2001) 3113; e-Print: hep-th/0008164.         [ Links ]

27. S. Hwang, Nucl. Phys. B354 (1991) 100.         [ Links ]

28. P.A. Griffin and O. F. Hernandez, Nucl. Phys. B356 (1991) 287.         [ Links ]

29. J. M. Evans, Nucl. Phys. B298 (1988) 92.         [ Links ]

30. A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Martroids, (Cambridge University Press,Cambridge, 1993).         [ Links ]

31. J. A. Nieto, Rev. Mex. Fis. E 51 (2005) 5; e-Print: hep-th/0407093.         [ Links ]

32. J. A. Nieto, "Maximal supersymmetry in eleven-dimensional supergravity revisited and chirotopes"; e-Print: hep-th/0603139.         [ Links ]

33. T. Thiemann, "Introduction to modern canonical quantum general relativity", gr-qc/0110034.         [ Links ]

34. D. Joyce, J. Diff. Geom. 53 (1999) 89; math.dg/9910002.         [ Links ]

35. R. Gambini and J. Pullin, "Loops, Knots, Gauge Theories and Quantum Gravity" (Cambridge Monographis in Mathematical Physics, 1996).         [ Links ]

36. D. Mulsch and B. Geyer, Int. J. Geom. Meth. Mod. Phys. 1 (2004) 185; hep-th/0310237.         [ Links ]

37. L. Smolin, "An Invitation to loop quantum gravity', published in *Cincinnati 2003, Quantum theory and symmetries* 655682; hep-th/0408048.         [ Links ]

38. A. Corichi, J. Phys. Conf. Ser. 24 (2005) 1; gr-qc/0507038.         [ Links ]

39. C. Rovelli, Phys. Rev. D 59 (1999) 104015; e-Print: gr-qc/9806121.         [ Links ]

40. L. Smolin, Nucl. Phys. B739 (2006) 169; hep-th/0503140.         [ Links ]

41. T. Thiemann, Class. Quant. Grav. 23 1923 (2006); hep-th/0401172.         [ Links ]

42. J. Brunnemann and D. Rideout, Oriented Matroids - Combinatorial Structures Underlying Loop Quantum Gravity, e-Print: arXiv:1003.2348.         [ Links ]

43. J. A. Nieto, Adv. Theor. Math. Phys. 8 (2004) 177; hep-th/0310071.         [ Links ]

44. J. A. Nieto, Adv. Theor. Math. Phys. 10 (2006) 747, hep-th/0506106.         [ Links ]

45. J. A. Nieto, J. Math. Phys. 45 (2004) 285; hep-th/0212100.         [ Links ]

46. J. A. Nieto and M. C. Marín, J. Math. Phys. 41 (2000) 7997.         [ Links ]

47. J. A. Nieto and M.C. Marín, Int. J. Mod. Phys. A 18 (2003) 5261;hep-th/0302193.         [ Links ]

48. A. Bachem and W. Kern, Linear Programming Duality; An Introduction of Oriented Matroids (Spring-Verlag Berlin Heidelberg, 1992).         [ Links ]

49. J. A. Nieto, Phys. Lett. A 262 (1999) 274; e-Print: hep-th/9910049.         [ Links ]

50. P. R. Brady, S. Droz, W. Israel and S.M. Morsink, Class. Quant. Grav. 13 (1996) 2211; e-Print: gr-qc/9510040.         [ Links ]

51. R. Geroch, A. Held and R. Penrose, J. Math. Phys. 14 (1973) 874.         [ Links ]

52. M. J. Duff, Phys. Lett. B 641 (2006) 335;         [ Links ] e-Print: hep-th/0602160.

53. H. Ooguri and C. Vafa, Nucl. Phys. B361 (1991) 469.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons