SciELO - Scientific Electronic Library Online

 
vol.58 número1A m-dimensional stochastic estimatorA 1.7 MHz Chua's circuit using VMs and CF+s índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.58 no.1 México feb. 2012

 

Investigación

 

Nature of the bonding, surface relaxation and charge transfer of Au dimmers on an MgO(100) surface

 

C. Quintanara, R. Caballeroa, J. Ulises Revelesb, and S.N. Khannab

 

a Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D.F., México. e–mail: cqs@matrix.super.unam.mx

b Physics Department, Virginia Commonwealth University, Richmond, Virginia, 23284–2000, USA.

 

Recibido el 12 de mayo de 2011.
Aceptado el 15 de diciembre de 2011.

 

Abstract

First principles electronic structure investigations of the nature of adsorption, relaxation of the atoms near the adsorption site, and the charging of the Au2 particle on the relaxed–rumpled MgO(100) surface have been carried out within the density functional theory–cluster–embedding approach. The investigations focus on an Au2 molecule, perpendicular to the surface, adsorbed at different locations. Three bonding sites are studied: a five coordinated oxygen regular terrace site O5c, an Fs neutral color center (two electrons in an O vacancy), and an F+s positive charged color center (one electron in an O vacancy). The studies indicate that large relaxation of the neighboring atoms and large charge transfer occurs for an Au2 over the color centers. An analysis of the one–electron energy levels of the Au dimer, the MgO surface and the Au2MgO(100) complex for each absorption site allows us to rationalize the nature of the bonding, surface relaxation, calculated absorption and dimerization energies and electron charge transfers.

Keywords: Supported gold nanoparticles; gold catalysis; density functional theory; metal oxides.

 

PACS: 61.72.Ji; 68.47.Jn

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

C.Q. acknowledges Prof. Dennis R. Salahub forvaluable discussions. R.C and C.Q. acknowledge financial support by the PAPIIT–UNAM IN116912–3 project and Proyecto Universitario de Tecnología Ambiental PUNTA–UNAM. S.N.K. and J.U.R. acknowledges support from the MURI grant from the Air Force Office of Scientific Research grant. Part of the calculations was performed on the computational equipment of DGSCA UNAM, particularly at the super computer Kan–Balam.

 

References

1. A.F.Carley etal., Phys. Chem. Chem.Phys. 13 (2011)2528.         [ Links ]

2. Z. Li, C. Ciobanu, J. Hu, J–P. Palomares–Baes, J–L. Rodrigez–Lopez and R. Richards, Phys. Chem. Chem Phys. 13 (2011) 2582.         [ Links ]

3. I. Laoufit et al., J. Phys. Chem. C 115 (2011) 4673.         [ Links ]

4. W.H. Kim, K.H. Cho, K. Ch. Choi, D.Y. Kim, and O.O. Park, IEEE Transactions on Electron Devices 57 (2010) 2644.         [ Links ]

5. M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Chem. Lett. 405 (1987).         [ Links ]

6. A. Sanchez, S. Abbet, U. Heiz, W. Schneider, H. Hakkinen, R. Barnett, and U. Landman, J. Phys. Chem. A 103 (1999) 9573.         [ Links ]

7. U. Heiz, A. Sanchez, S. Abbet, and W. Schneider, Chem. Phys. 262 (2000) 189.         [ Links ]

8. M. Walter, and H. Hakkinen, Phys. Rev. B. 72 (2005) 205440.         [ Links ]

9. L. Giordano, J. Carrasco, C. Di Valentin, F. Illas, and G. Pac–chioni, J Chem. Phys. 124 (2006) 174709.         [ Links ]

10. M. Haruta, Nature 437 (2005) 1098.         [ Links ]

11. N. Lopez, and J. Norskov, J Am. Chem. Soc. 124 (2002) 11262.         [ Links ]

12. M. Okumura, S. Tsubota, and M. Haruta, J. Mol. Catal. A Chem. 199 (2003) 73.         [ Links ]

13. B. Yoon et al., Science 307 (2005) 403.         [ Links ]

14. S. Abbet, A. Sanchez, U. Heiz, W. Schneider, A. Ferrari, G. Pacchioni, and N. Rosch, J. Am. Chem. Soc. 122 (2000) 3453.         [ Links ]

15. L. Giordano, C. Di Valentin, J. Goniakowski, and G. Pacchioni, Phys. Rev. Lett. 92 (2004) 096105.         [ Links ]

16. A. Bogicevic, and D. Jennison, Surf. Sci. 515 (2002) L481.         [ Links ]

17. Z.P. Liu, X.Q. Gong, J. Kohanoff, C. Sanchez, and P. Hu, Phys. Rev. Lett. 91 (2003) 266102.         [ Links ]

18. X.Q. Gong, Z.P. Liu, R. Raval, and P. Hu, J. Am. Chem. Soc. 126 (2004) 8.         [ Links ]

19. L.M. Molina, and B. Hammer, Phys. Rev. B. 69 (2004) 155424.         [ Links ]

20. G. Pacchioni, L. Giordano, and M. Baistrocchi, Phys. Rev. Lett. 94 (2005) 226104.         [ Links ]

21. G. Barcaro, and A. Fortunelli, J. Chem. Theo. Comp. 1 (2005) 972.         [ Links ]

22. A. Del Vitto, G. Pacchioni, F. Delbecq, and P. Sautet, J. Phys. Chem. B. 109 (2005) 8040.         [ Links ]

23. C. Inntam, L. Moskaleva, K. Neyman, V. Nasluzov, and N. Rosch, Appl. Phys. A–Mater. 82 (2006) 181.         [ Links ]

24. Y. Chen, P. Crawford, and P. Hu, Catal. Lett. 119 (2007) 21.         [ Links ]

25. R. Coquet, G. Hutchings, S. Taylor, and D. Willock, J. Mater. Chem. 16 (2006) 1978.         [ Links ]

26. L. Molina, and J. Alonso, J. Phys. Chem. C. 111 (2007) 6668.         [ Links ]

27. R. Caballero, C. Quintanar, A.M. Köster, S.N. Khanna, and J.U. Reveles, J. Phys, Chem. C 112 (2008) 14949.         [ Links ]

28. H.M. Evjen, Phys. Rev. 39 (1932) 675.         [ Links ]

29. C. Quintanar, R. Caballero, and V.M. Castaño, Int. J. Quantum Chem. 102 (2005) 820.         [ Links ]

30. J.U. Reveles, S.N. Khanna, and A.M. Köster, J. Mol. Struc.–Theochem 762 (2006) 171.         [ Links ]

31. J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.         [ Links ]

32. A. M. Köster et al., deMon2k, Ver. 2.3.6(The deMon Developers, Cinvestav, México 2007). Available at http://www.deMonsoftware.com        [ Links ]

33. J.W. Mintmire, and B.I. Dunlap, Phys. Rev. A 25 88 (1982).         [ Links ]

34. A.M. Köster, J.U. Reveles, and J.M. del Campo, J. Chem. Phys. 121 (2004) 3417.         [ Links ]

35. N. Godbout, D.R. Salahub, J. Andzelm, and E. Wimmer, Can. J. Chem. 70 (1992) 560.         [ Links ]

36. P. Schwerdtfeger, M. Dolg, W. Schwarz, G. Bowmaker, and P. Boyd, J. Chem. Phys. 91 (1989) 1762.         [ Links ]

37. K. Peterson, and C. Puzzarini, Theor. Chem. Acc. 114 (2005) 283.         [ Links ]

38. J.U. Reveles, and A.M. Köster, J. Comput. Chem. 25 (2004) 1109.         [ Links ]

39. P. Sushko, A. Shluger, and C. Catlow, Surf. Sci. 450 (2000) 153.         [ Links ]

40. A. Shluger, L. Kantorovich, A. Livshits, and M. Gillan, Phys. Rev.B 56 (1997 15332).         [ Links ]

41. E. Keller, Chem. Unserer Zeit 14 (1980) 56. Available at http://www.krist.uni–freiburg.de/ki/Mitarbeiter/Keller/schakal.html        [ Links ]

42 G Schaftenaar and J Noordik, J. Comput. Aid. Mol. Des. 14 (2000) 123. Available at http://www.cmbi.ru.nl/molden/molden.html        [ Links ]

43. E. Glendening et al., Theoretical Chemistry Institute, (University ofWisconsin, Madison, WI, 2004); http://www.chem.wisc.edu/~nbo5.         [ Links ]

44. M. Morse, Chem. Rev. 86 (1986) 1049.         [ Links ]

45. S. Boys and F. Bernardi,Mol. Phys. 100 (2002) 65.         [ Links ]

46. M. Sterrer et al., Angew. Chem. Int. Edit. 45 (2006) 2630.         [ Links ]

47. V. Simic–Milosevic et al., J. Am. Chem. Soc. 130 (2008) 7814.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons