Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.58 no.2 México abr. 2012
Revisión
Cien años de la función de distribución de Jüttner para el gas relativista
G. ChacónAcosta
Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma MetropolitanaCuajimalpa, Artificios 40, México D.F. 01120, México, email: gchacon@correo.cua.uam.mx
Recibido el 22 de agosto de 2011.
Aceptado el 31 de enero de 2012.
Resumen
En 2011 se cumple un siglo de que Ferencz Jüttner obtuvo la función de distribución para el gas relativista. Esta distribución estuvo envuelta en una polémica que duró casi un siglo y que estuvo relacionada con las bases de la termodinámica relativista. En el presente trabajo se hace una breve revisión de lo sucedido en éstos cien años alrededor de la distribución relativista de Jüttner. Se describe parte del trabajo original de Jüttner, las circunstancias en las que obtuvo su distribución, así como las características particulares de esta comparadas con la bien conocida distribución de MaxwellBoltzmann para el gas no relativista en equilibrio. En los apartados finales se mencionan las aplicaciones principales de la distribución de Jüttner desde el trabajo de Chandrasekhar hasta el plasma de quarks y gluones. Se discuten también los desarrollos más recientes que parecen indicar una solución a la polémica en que estuvo involucrada la distribución relativista.
Descriptores: Relatividad especial; termodinámica; teoría cinética de los gases; hidrodinámica.
Abstract
In 2011 marks a century that Ferencz Jüttner obtained the distribution function for the relativistic gas. This distribution was involved in a controversy that lasted nearly a century and was related to the foundations of relativistic thermodynamics. In this paper it is done a brief review of what happened in the last hundred years around the relativistic Jüttner distribution. It is described part of the Jüttner's original work, the circumstances under which he obtain his distribution as well as the particular characteristics of it compared with those od the well known MaxwellBoltzmann equilibrium distribution for the nonrelativistic gas. In the final sections, there are listed the main applications of the Jüttner distribution, from the work of Chandrasekhar to the quarkgluon plasma. There are also discussed the most recent developments that suggest a solution to the controversy that was surrounded the relativistic distribution.
Keywords: Special relativity; thermodynamics; kinetic theory of gases; hydrodynamics.
PACS: 03.30.+p; 05.70.a; 51.10.+y; 95.30.Lz
DESCARGAR ARTÍCULO EN FORMATO PDF
Referencias
1. F. Jüttner, Ann. Physik 339 (1911) 856. [ Links ]
2. F. Jüttner, Ann. Physik340 (1911) 145. [ Links ]
3. F. Jüttner, Zeitschr. Phys. 47 (1928) 542. [ Links ]
4. L. GarcíaColín Scherer, Introduccion a la Física Estadística (El Colegio Nacional, México 2005). [ Links ]
5. L.P. Horwitz, W.C. Schieve, C. Piron, Ann. Phys. 137 (1981) 306. [ Links ]
6. L.P. Horwitz, S. Shashoua, and W.C. Schieve, Physica A 161 (1989) 300. [ Links ]
7. W.C. Schieve, Found. Phys. 35 (2005) 1359. [ Links ]
8. E. Lehmann, J. Math. Phys. 47 (2006) 023303. [ Links ]
9. N.G. van Kampen, Physica 43 (1969) 244. [ Links ]
10. F. Debbasch, J.P. Rivet and W.A. van Leeuwen, Physica A 301 (2001) 181. [ Links ]
11. C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, (W. H. Freeman and Company New York 1973). [ Links ]
12. C. Cercignani and G.M. Kremer, The Relativistic Boltzmann Equation: Theory and Applications. Progress in Mathematical Physics Vol. 22 (Birkhauser Verlag, Basel Botson Berlin 2002). [ Links ]
13. S. R. de Groot, W. A. van Leewen and Ch. G. van Weert, Relativistic Kinetic Theory, (NorthHolland, Amsterdam, (1980). [ Links ]
14. W. Rindler, Relativity: Special, General, and Cosmological, (Oxford University Press 2006). [ Links ]
15. J. Dunkel and P. Hänggi, Phys. Rev. E 71 (2005) 016124. [ Links ]
16. J. Dunkel, P. Hänggi, Physica A 374 (2007) 559. [ Links ]
17. J. Dunkel and P. Hänggi, Phys. Rep. 471 (2009) 1. [ Links ]
18. R. Brown, Edinburgh New Philos. J. 5 (1828) 358. [ Links ]
19. A. Einstein, Investigations on the Theory of the Brownian Movement, (Dover Publications, Inc. 1956). [ Links ]
20. M. von Smoluchowski, Ann. Physik 21 (1906) 756. [ Links ]
21. P. Langevin, Comptes Rendus Acad. Sci. (Paris) 146 (1908) 530. [ Links ]
22. J. Perrin, Ann. Chim. Phys. 18 (1909) 5. [ Links ]
23. G. ChacónAcosta and G.M. Kremer, Phys. Rev. E 76 (2007) 021201. [ Links ]
24. F. Debbasch, AIP Conf. Proc. 861 (2006) 488. [ Links ]
25. R. Hakim, J. Math. Phys. 9 (1986) 1805. [ Links ]
26. J. Dunkel, P. Talkner and P. Hänggi, New J. Phys. 9 (2007) 144. [ Links ]
27. G. ChacónAcosta, L. Dagdug and H. MoralesTécotl, Phys. Rev.E 81 (2010) 021126. [ Links ]
28. T.K. Nakamura, EuroPhys. Lett 88 (2009) 40009. [ Links ]
29. D. Cubero, J. CasadoPascual, J. Dunkel, P. Talkner and P. Hänggi, Phys. Rev. Lett. 99 (2007) 170601. [ Links ]
30. A. Montakhab, M. Ghodrat, and M. Barati, Phys. Rev. E 79 (2009) 031124. [ Links ]
31. J. Dunkel, P. Hänggi and S. Hilbert, Nature Phys. 5 (2009) 741. [ Links ]
32. A. Aliano, L. Rondoni and G.P. Morriss, Eur. Phys. J. B 50 (2006) 361. [ Links ]
33. F. Peano, M. Marti, L.O. Silva and G. Coppa, Phys. Rev. E 79 (2009) 025701(R). [ Links ]
34. L.B. Okun, Physics Today 31 (1989) 11; Sov. Phys. Usp. 32 (1989) 629. [ Links ]
35. D. Cubero and J. Dunkel, EuroPhys. Lett. 87 (2009) 30005. [ Links ]
36. L. Burakovsky and L.P. Horwitz, Found. Phys. 25 (1995) 785. [ Links ]
37. I. Müller, A History of Thermodynamics (SpringerVerlag, Berlin Heidelberg 2007). [ Links ]
38. L. Pyenson, Ann. Phys. (Berlin) 17 (2008) 176. [ Links ]
39. M. Planck, Ann. Physik 26 (1908) 1. [ Links ]
40. A. Einstein, Jahrb. Radioakt. Elektron 4 (1907 411). [ Links ]
41. H. Ott, Zeitschr, Physik 175 (1963) 70; A. Arzelies, Nuovo Cimento 35 (1965) 792. [ Links ]
42. P.T. Landsberg, Nature (London) 212 (1966) 571; Nature (London) 214 (1967) 903. [ Links ]
43. M. Abramowitz and I. Stegun, Handbook ofMathematical Functions. (Dover Publications, Inc. 1968). [ Links ]
44. N.G. Lewis and Q.E. Adams, Phys. Rev. 5 (1915) 510. [ Links ]
45. C. Meller, The Theory of Relativity, (Calerdon Press Oxford 1972). [ Links ]
46. J.L. Synge, The Relativistic Gas, (NorthHolland Publishing Company, Amsterdam 1957). [ Links ]
47. R. C. Tolman, Phil. Mag. (Series 6), 28 (1914) 583; Phys. Rev. 11 (1918) 261. [ Links ]
48. O. BandorffNielsen, Scand. J. Statist 9 (1982) 43. [ Links ]
49. A. AragonésMunoz, and A. SandovalVillalbazo, J. Phys. Conf. Series 229 (2010) 012075. [ Links ]
50. S. Chandrasekar, An Introduction to the StudyofStellar Structure. (Dover Publications Inc., 1958). [ Links ]
51. S. Chapman and T.G. Cowling, The Mathematical Theory of NonUniform Gases, 3th ed. (Cambridege University Press, Cambridge, 1970). [ Links ]
52. W. Israel, J. Math. Phys. 4 (1963) 1163. [ Links ]
53. N.A. Chernikov, Acta Phys. Pol. 23 (1963) 629. [ Links ]
54. J. Ehlers, in Proceedings of the International School of Physics, EnricoFermi, Ed. R. K. Sach, (Academic Press 1971), pp. 170. [ Links ]
55. J. M. Stewart, Nonequilibrium relativistic kinetic theory. Lecture Notes in Physics vol.10 (Springer, Heidelberg 1971). [ Links ]
56. A.R. Liddle, D.H. Lyth, Cosmological Inflation and Large Scale Structure (Cambridge University Press 2000). [ Links ]
57. J.A. Peacock, Cosmological Physics (Cambridge University Press 1999). [ Links ]
58. E.W. Kolb, M.S. Turner, The Early Universe Paperback Ed. (Westview Press 1994). [ Links ]
59. J. Bernstein, Kinetic Theory in the Expanding Universe. Paperback Ed. (Cambridge University Press 2004). [ Links ]
60. R.A. Sunyaev and Y.B. Zeldovich, Comments Astrophys. Space Phys. 4 (1972) 173; M. Jones et al., Nature (London) 365 (1993) 320; M. Birkinshaw, S. F. Gull and H. Hardebeck, Nature (London) 309 (1984) 34. [ Links ]
61. A.S. Kompannets, Sov. Phys.JETP 4 (1957) 730. [ Links ]
62. A. SandovalVillalvazo and L. S. GarcíaColín, J. Phys. A: Math. Gen 36 (2003) 4641; A. SandovalVillalvazo and L. S. GarcíaColín, Gen. Relativ. Gravit. 37 (2005) 831. [ Links ]
63. N. Itoh, Y. Kohyama, and S. Nozawa, Astrophys. J. 502 (1998) 7. [ Links ]
64. D. A. Prokhorov, S. Colafrancesco, T. Akahori, K. Yoshikawa, S. Nagataki, and K.I. Seon, A&A, 529 (2011) A39. [ Links ]
65. Z. Haba, Mod. Phys. Lett. A 24 (2009) 3193. [ Links ]
66. Z. Haba, arXiv:0903.2622 (2009). [ Links ]
67. A. Bret, L. Gremillet, D. Benisti, and E. Lefebvre, Phys. Rev. Lett. 100 (2008) 205008; M.E, Dickermann, L. O'C. Drury, and P.K. Shukla, New J. Phys. 8 (2006) 40. [ Links ]
68. E. Bertschinger, AIP Conf. Proc. 861 (2006) 97. [ Links ]
69. F. Dowker, J. Henson y R. D. Sorkin, Mod. Phys. Lett. A19 (2004) 1829; L. Philpott, F. Dowker y R. D. Sorkin, Phys. Rev. D 79 (2009) 124047. [ Links ]
70. B.L. Hu and E. Verdaguer, Liv. Rev. Rel. 11 (2008) 3. (http://www.livingreviews.org/lrr20083). [ Links ]
71 H van Hees, V Greco, y R Rapp, Phys. Rev. C 73 (2006) 034913; P. Huovinen y D. Molnar, Phys. Rev. C 79 (2009) 014906. [ Links ]
72. R.S. Bhalerao, Pramana J. Phys. 75 (2010) 247; R. Kuiper and G. Wolschin, Ann. Phys. (Leipzig) 16 (2007) 67. [ Links ]
73. M. Rangamani, Class. Quantum Grav. 26 (2009) 224003. [ Links ]
74. M.I. Katsnelson, Materials Today 10 (2007) 20. [ Links ]
75. M. Müller, J. Schmalian, and L. Fritz, Phys. Rev. Lett. 103 (2009) 025301. [ Links ]
76. A. Pototsky, F. Marchesoni, F.V. Kusmartsev, P. Hänggi, and S.E. Savel'ev, (2011). arXiv:1103.0945 [ Links ]
77. A. SandovalVillalbazo, A.L. GarciaPerciante, and L.S. GarciaColin, Physica A 388 (2009) 3765. [ Links ]
78. X.G. Huang, T. Kodama, T. Koide, and D.H. Rischke, Phys. Rev. C 83 (2011) 024906; N. Andersson, C. LopezMonsalvo, arXiv:1107.0165 (2011). [ Links ]
79. M. Mendoza, B.M. Boghosian, H.J. Hermann, and S. Succi, Phys. Rev. Lett. 105 (2010) 014502. [ Links ]
80. A. Komar, Gen. Rel. Grav. 28 (1996) 379; P.T. Landsberg, Am. J. Phys. 60 (1992) 561; V.J. Menon and D.C. Agrawal, Am. J. Phys. 59 (1991)258. [ Links ]
81. D. Ter Haar and H. Wergeland, Phys. Rep. 1 (1971) 31. [ Links ]
82. D.J. LoisMartinez, Class. Quantum Grav. 28 (2011) 035004. [ Links ]
83. D.G. Currie, T.F. Jordan, and E.C.G. Sudarshan, Rev. Mod. Phys. 35 (1963) 350. [ Links ]
84. G. Marmo, N. Mukunda, and E.C.G. Sudarshan, Phys. Rev. D 30 (1984)2110. [ Links ]
85. F. Jüttner, Zeitschr. Math. undPhys. 62 (1913) 410. [ Links ]
86. M. Ghodrat and A. Montakhab, Computer Physics Communications 182 (2011) 1909. [ Links ]
87. M. Ghodrat and A. Montakhab, Phys. Rev. E 82 (2010) 011110. [ Links ]
88. En la teoría de la relatividad el hecho de que las leyes de la física sean las mismas en cualquier sistema de referencia se expresa haciendo uso de cantidades físicas (tensores, vectores, etc.) que transforman correctamente ante las Transformaciones de Lorentz. Expresiones así escritas se les llama manifiestamente covariantes.