SciELO - Scientific Electronic Library Online

 
vol.58 número2Non-stationary response of photorefractive crystal under an external sinusoidal electric fieldCalculation of the maximun number of vibrational and rotational energy states for diatomic molecules índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.58 no.2 México abr. 2012

 

Investigación

 

Characterization of the level fluctuations in a physical model of the steel continuous casting mold through image processing

 

J.R. Miranda–Tello, F. Sánchez–Rangel, C.A. Real–Ramírez, G. Khatchatourov, J.A. Aragón–Lezama, L.F. Hoyos–Reyes, E.A. Andrade–González, and J.I. González–Trejo

 

División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana–Azcapotzalco, Av. San Pablo 180, Col. Reynosa–Tamaulipas, Del. Azcapotzalco, 02200, México, D.F., México, e–mail: jrmt@correo.azc.uam.mx

 

Recibido el 13 de diciembre de 2011.
Aceptado el 24 de enero de 2012.

 

Abstract

In this work is characterized the periodic behavior of the liquid level inside a scaled cold–model of the mold section of a steel continuous casting machine, which uses water as working fluid. The models are designed in order to simulate the dynamic forces acting on the molten steel inside a mold of continuous casting. The force magnitude can induce choppy flow, waves and vortex formation in the mold. The experimental model uses a closed–loop hydraulic configuration. In the mold, the inlet and the outlet water flow rates are the same. This configuration resembles a perfect control of the liquid level inside the water model. A high–speed video camera was used to get several video clips of the movement of the water level profile. Several techniques were tested in order to obtain the best lighting conditions for recording the water movement. The edge–detection technique of Sobel was used to determine the profile of the liquid level in each one of the images recorded. The analysis of the dynamic behavior of the water profile showed that the fluctuations of the liquid level inside the mold have a complex structure, which is repeated over large time periods.

Keywords: Continuous casting; edge–detection; level control.

 

PACS: 61.25.Mv; 47.27.E; 42.30.Tz

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. C.H. Yim, and O. Kwon, Journal of Iron and Steel Research International 15 (2008) 52–58.         [ Links ]

2. C. Real, et al., ISIJ International 46 (2006) 1183–1191.         [ Links ]

3. B. You, et al., ISIJ International 49 (2009) 1174–1183.         [ Links ]

4. M.A. Barron, R. Aguilar, and J. Gonzalez, IEEE Transactions on Industry Applications 36 (2000) 861–864.         [ Links ]

5. M.A. Barron, R. Aguilar, and J. Gonzalez, IEE Proceedings–Control Theory and Applications 147 (2000) 416–420.         [ Links ]

6. I.K. Craig, F.R. Camisani–Calzolari, and P.C. Pistorius, Control Engineering Practice 9 (2001) 1013–1020.         [ Links ]

7. L.F. Zhang, and B.G. Thomas, ISIJ International. 43 (2003) 271–291.         [ Links ]

8. R. Miranda, et al., ISIJ International 45 (2005) 1626–1635.         [ Links ]

9. B.Z. Shen, H.F. Shen, and B.C. Liu, Ironmaking & Steelmaking 36 (2009) 33–38.         [ Links ]

10. B.Z. Shen, H.F. Shen, and B.C. Liu, ISIJ International 47 (2007) 427–432.         [ Links ]

11 . Y.J. Jeon, H.J. Sung, and S. Lee, Metallurgical and Materials Transactions B–Process Metallurgy and Materials Processing Science 41 (2010) 121–130.         [ Links ]

12. Q. Yuan, et al., Metallurgical and Materials Transactions B–Process Metallurgy and Materials Processing Science. 35 (2004) 967–982.         [ Links ]

13. D. Gupta, S. Chakraborty, and A.K. Lahiri, ISIJ International 37 (1997) 654–658.         [ Links ]

14. D. Gupta, and A.K. Lahiri, Metallurgical and Materials Transactions B–Process Metallurgy and Materials Processing Science. 25 (1994) 227–233.         [ Links ]

15. V. Singh, etal., Isij International 46 (2006)210–218.         [ Links ]

16. H.F. Shen, B.Z. Shen, and B.C. Liu, Steel Research International 78 (2007) 531–535.         [ Links ]

17. C. Real–Ramirez, and J. Gonzalez–Trejo, International Journal of Minerals Metallurgy and Materials. 18 (2011) 397–406.         [ Links ]

18. R.C. Gonzalez, and R.E. Woods, Digital image processing. 3rd ed. (Upper Saddle River, N.J.: Prentice Hall. xxii, 2008) p. 954.         [ Links ]

19. F. Arandiga, etal.,Image andVision Computing 28 (2010) 553562.         [ Links ]

20. A.C. Bovik, Academic Press series in communications, networking and multimedia (San Diego: Academic Press. xv, 2000) p. 891.         [ Links ]

21. T.K. Koh, et al., Minerals Engineering 22 (2009) 537–543.         [ Links ]

22. G. Petschnigg et al., ACM Transactions on Graphics 23 (2004) 664–672.         [ Links ]

23. M.S. Nixon and A.S. Aguado, Feature extraction and image processing. 1st ed., (Oxford ; Boston: Newnes. xii, 2002) p. 350        [ Links ]

24. S.W. Smith, Digital signal processing : a practical guide for engineers and scientists. (Demystifying technology series. Amsterdam ; Boston: Newnes. xiv, 2003). p. 650        [ Links ]

25. D.F. Elliott, Handbook of digital signal processing : engineering applications (San Diego: Academic Press. xxii, 1987). p. 999        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons