Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.58 no.6 México dic. 2012
Investigación
Optimization of a cubic equation of state and van der Waals mixing rules for modeling the phase behavior of complex mixtures
J.A. Lazzús
Departamento de Física, Universidad de La Serena, Casilla 554, La Serena, Chile, e-mail: jlazzus@dfuls.cl
Recibido el 25 de julio de 2012
Aceptado el 21 de septiembre de 2012
Abstract
A thermodynamic modeling for the vapor-liquid equilibrium of binary systems of supercritical fluids and ionic liquids is presented. The van der Waals mixing rules and a cubic equation of state are used to evaluate the fugacity coefficient on the systems. Then, a particle swarm algorithm was used to minimize the difference between calculated and experimental bubble pressure, and calculate the interaction parameters for all systems used. The results show that the bubble pressures were correlated with low deviations between experimental and calculated values. These deviations show that the proposed model is a good technique to optimize the interaction parameters of the phase equilibrium of binary systems containing supercritical fluids and ionic liquids.
Keywords: Particle swarm optimization; phase equilibrium; ionic liquids; equation of state.
PACS: 51.30.+i; 64.75.Cd; 02.60.Pn
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgments
This work was partially supported by the Direction of Research of the University of La Serena (DIULS), and the Department of Physics of the University of La Serena (DFULS).
References
1. Q. Dou, J. Phys. Condens. Matter 23 (2011) 175001. [ Links ]
2. J.A. Lazzús, Int. J. Thermophys. 30 (2009) 883. [ Links ]
3. L. Palma-Chilla, J.A. Lazzús and A.A. Pérez Ponce, J. Eng. Thermophys. 20 (2011) 487. [ Links ]
4. W. Ren, B. Sensenich and A.M. Scurto, J. Chem. Thermodyn. 42 (2010) 305. [ Links ]
5. P.F. Arce, P.A. Robles, T.A. Graber and M. Aznar, Fluid Phase Equilib. 295 (2010) 9. [ Links ]
6. J.A. Lazzús, A.A. Pérez Ponce and L. Palma-Chilla, Fluid Phase Equilib. 317 (2012) 132. [ Links ]
7. D.Y. Peng and D.B. Robinson, Ind. Eng. Chem. Fund. 15 (1976) 59. [ Links ]
8. J.A. Lazzús, J. Eng. Thermophys. 20 (2009) 306. [ Links ]
9. Y. Jiang, T. Hu, C.C. Huang, and X. Wu, Appl. Math. Comput. 193 (2007) 231. [ Links ]
10. J.A. Lazzús, Comput. Math. Appl. 60 (2010) 2260. [ Links ]
11. T. Da and G. Xiurun, Neurocomputing 63 (2005) 527. [ Links ]
12. A. Shariati and C.J. Peters, J. Supercrit. Fluids 25 (2003) 109. [ Links ]
13. A. Shariati and C.J. Peters, J. Supercrit. Fluids 29 (2004) 43. [ Links ]
14. A. Shariati and C.J. Peters, J. Supercrit. Fluids 30 (2004) 139. [ Links ]
15. S. Hwang, Y. Park, and K. Park, J. Chem. Thermodyn. 43 (2011)339. [ Links ]
16. K.L. Gutkowski, A. Shariati, and C.J. Peters, J. Supercrit. Fluids 39 (2006) 187. [ Links ]
17. J. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, USA, 1975). [ Links ]
18. M. Reilly, Computer Programs for Chemical Engineering Education (Sterling Swift, Texas, 1972). [ Links ]