SciELO - Scientific Electronic Library Online

 
vol.58 número6Structural properties of WO3 dependent of the annealing temperature deposited by hot-filament metal oxide depositionTiO2 and Al2O3 ultra thin nanolaminates growth by ALD; instrument automation and films characterization índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.58 no.6 México dic. 2012

 

Investigación

 

Optimization of a cubic equation of state and van der Waals mixing rules for modeling the phase behavior of complex mixtures

 

J.A. Lazzús

 

Departamento de Física, Universidad de La Serena, Casilla 554, La Serena, Chile, e-mail: jlazzus@dfuls.cl

 

Recibido el 25 de julio de 2012
Aceptado el 21 de septiembre de 2012

 

Abstract

A thermodynamic modeling for the vapor-liquid equilibrium of binary systems of supercritical fluids and ionic liquids is presented. The van der Waals mixing rules and a cubic equation of state are used to evaluate the fugacity coefficient on the systems. Then, a particle swarm algorithm was used to minimize the difference between calculated and experimental bubble pressure, and calculate the interaction parameters for all systems used. The results show that the bubble pressures were correlated with low deviations between experimental and calculated values. These deviations show that the proposed model is a good technique to optimize the interaction parameters of the phase equilibrium of binary systems containing supercritical fluids and ionic liquids.

Keywords: Particle swarm optimization; phase equilibrium; ionic liquids; equation of state.

 

PACS: 51.30.+i; 64.75.Cd; 02.60.Pn

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

This work was partially supported by the Direction of Research of the University of La Serena (DIULS), and the Department of Physics of the University of La Serena (DFULS).

 

References

1. Q. Dou, J. Phys. Condens. Matter 23 (2011) 175001.         [ Links ]

2. J.A. Lazzús, Int. J. Thermophys. 30 (2009) 883.         [ Links ]

3. L. Palma-Chilla, J.A. Lazzús and A.A. Pérez Ponce, J. Eng. Thermophys. 20 (2011) 487.         [ Links ]

4. W. Ren, B. Sensenich and A.M. Scurto, J. Chem. Thermodyn. 42 (2010) 305.         [ Links ]

5. P.F. Arce, P.A. Robles, T.A. Graber and M. Aznar, Fluid Phase Equilib. 295 (2010) 9.         [ Links ]

6. J.A. Lazzús, A.A. Pérez Ponce and L. Palma-Chilla, Fluid Phase Equilib. 317 (2012) 132.         [ Links ]

7. D.Y. Peng and D.B. Robinson, Ind. Eng. Chem. Fund. 15 (1976) 59.         [ Links ]

8. J.A. Lazzús, J. Eng. Thermophys. 20 (2009) 306.         [ Links ]

9. Y. Jiang, T. Hu, C.C. Huang, and X. Wu, Appl. Math. Comput. 193 (2007) 231.         [ Links ]

10. J.A. Lazzús, Comput. Math. Appl. 60 (2010) 2260.         [ Links ]

11. T. Da and G. Xiurun, Neurocomputing 63 (2005) 527.         [ Links ]

12. A. Shariati and C.J. Peters, J. Supercrit. Fluids 25 (2003) 109.         [ Links ]

13. A. Shariati and C.J. Peters, J. Supercrit. Fluids 29 (2004) 43.         [ Links ]

14. A. Shariati and C.J. Peters, J. Supercrit. Fluids 30 (2004) 139.         [ Links ]

15. S. Hwang, Y. Park, and K. Park, J. Chem. Thermodyn. 43 (2011)339.         [ Links ]

16. K.L. Gutkowski, A. Shariati, and C.J. Peters, J. Supercrit. Fluids 39 (2006) 187.         [ Links ]

17. J. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, USA, 1975).         [ Links ]

18. M. Reilly, Computer Programs for Chemical Engineering Education (Sterling Swift, Texas, 1972).         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons