SciELO - Scientific Electronic Library Online

 
vol.59 número2Exploring solutions for Type-II superconductors in critical stateA theorem allowing the derivation of deterministic evolution equations from stochastic evolution equations: Tensorial, spinorial, and other extensions índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.59 no.2 México mar./abr. 2013

 

Investigación

 

Phenomenological model for yield stress based on the distribution of chain lengths in a dilute magnetorheological fluid under an oscillatory magnetic field

 

F. Donado*, P. Miranda-Romagnoli*, R. Agustín-Serrano**

 

*Instituto de Ciencias Básicas e Ingeniería de la Universidad Autónoma del Estado de Hidalgo-AAMF, Pachuca 42184, Pachuca, México, e-mail: fernando@uaeh.edu.mx

**Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Puebla, Puebla 72570, Puebla, México.

 

Recibido el 25 de abril de 2012.
Aceptado el 16 de octubre de 2012.

 

Abstract

We study the distribution of chain lengths in a magnetorheological fluid based on mineral magnetite particles dispersed in a dexrontype oil exposed simultaneously to a static magnetic field and a sinusoidal field of low amplitude, the fields are transverse to each other. We experimentally determined the general behavior of the distributions under several conditions of intensities of the fields, particle concentration, liquid viscosity, and frequency of the sinusoidal field. We found that in all cases exponential fits describe well these distributions. Based on this result we propose a simple yield stress model for a magnetorheological fluid which differs from other models that posit all chains are of the same length. We compare this model with experimental results and found that there is a well qualitative agreement with them and in some cases also there is a quantitative agreement. In the case of using only static field, the model is in accord with the existence of a magnetic field threshold above which the yield stress increases faster than below it.

Keywords: Magnetorheological fluids; yield stress; chain length distribution.

 

PACS: 83.80.Gv; 83.60.La; 83.60.Np

 

DESCARGAR ARTÍCULO EN FORAMTO PDF

 

Acknowledgements

The partial financial support by CONACyT, México grant 80629 is acknowledged. R. Agustin-Serrano received a fellowship from CONACyT.

 

References

1. H. M. Laun, C. Gabriel, and C. Kieburg, Rheol. Acta 50 (2011) 141-157        [ Links ]

2. J. Rodríguez-López, L. Elvira Segura, and F. Montero de Espinosa Freijo, J. Magn. Magn. Mater. 324 (2012) 222-230        [ Links ]

3. M. Ocalan and G. H. McKinley, Journal of Intelligent Material Systems and Structures January (2012) doi: 10.1177/104538911429601        [ Links ]

4. F. Vereda, J. de Vicente, J. P. Segovia-Gutiérrez, and R. Hidalgo-Alvarez, J. Phys. D: Appl. Phys. 44 (2011) 425002        [ Links ]

5. J. de Vicente, J. A. Ruiz-López, E. Andablo-Reyes, J. P. Segovia-Gutiérrez, and R. Hidalgo-Alvarez, J. Rheol. 55 (2011) 753        [ Links ]

6. M. J. Hato, H. J. Choi, H. H. Sim, B. O. Park, and S. S. Ray, Colloids and Surfaces A: Physicochem. Eng. Aspects 377 (2011) 103-109        [ Links ]

7. G.K. Auernhammer, D. Collin, and P. Martinoty, J. Chem. Phys. 124 (2006) 204907        [ Links ]

8. J. de Vicente, M.T. López-López, J.D.G. Duran, and F. González-Caballero, Rheol. Acta 44 (2004) 94-103.         [ Links ]

9. D. Kittipoomwong and D.J. Klingenberg, and J.C. Ulicny, J. Rheol. 49 (2005) 1521.         [ Links ]

10. R. Tao, J. Phys.: Condens. Matter. 13 (2001) R979.         [ Links ]

11 . N. Caterino, M. Spizzuoco, and A. Occhiuzzi, Smart. Mater. Struct. 20 (2011)065013        [ Links ]

12. M. M. Rashid, N. A. Rahim, M. A. Hussain, and M.A. Rahman, IEEE Trans. Ind. Appl. 47 (2011) 1051-1059        [ Links ]

13. P. Horvath and D. Torocsik, Mechatronics (2012) 89-93 doi:10.1007/978-3-642-23244-2-11.         [ Links ]

14. J. C. Lambropoulos, C. Miao, and S. D. Jacobs, Optics Express 18 (2010) 19713.         [ Links ]

15. J. de Vicente, D. J. Klingenberg, and R. Hidalgo-Alvarez, Soft Matter 7 (2011)3701-3710.         [ Links ]

16. J.L. Carrillo, F. Donado, and M.E. Mendoza, Phys. Rev. E 68 (2003) 061509.         [ Links ]

17. J.M. Tavares, J.J. Weis, and M.M. Telo da Gama, Phys. Rev. E 59(1999) 4388.         [ Links ]

18. S. Cutillas and J. Liu, Phys. Rev. E 64 (2001) 011506.         [ Links ]

19. O. Volkova, S. Cutillas, and G. Bossis, Phys. Rev. Lett. 82 (1999) 233.         [ Links ]

20. X. Tang and H. Conrad, J. Phys. D: Appl. Phys. 33 (2000) 30263032.         [ Links ]

21. R. Tao and Q. Jiang, Phys. Rev. E 57 (1998) 5761.         [ Links ]

22. S. Cutillas, G. Bossis, and A. Cebers, Phys. Rev. E 57 (1998) 804.         [ Links ]

23. P. Domínguez-García, S. Melle, J.M. Pastor and M.A. Rubio, Phys. Rev. E 76 (2007) 051403.         [ Links ]

24. P. Domínguez-García, S. Melle, and M.A. Rubio, J. Colloid Interface Sci. 333 (2009) 221-229.         [ Links ]

25. F. Donado, U. Sandoval, and J.L. Carrillo, Phys. Rev. E 79 (2009) 011406.         [ Links ]

26. U. Sandoval, J.L. Carrillo, and F. Donado, Rev. Mex. Fls. E 56 (2010) 123-133.         [ Links ]

27. B.J. de Gans, N.J. Duin, D. van den Ende, and J. Mellema, J. Chem. Phys. 113 (2000) 2032.         [ Links ]

28. M.A. Osipov, P.I.C. Teixeira, and M.M. Telo da Gama, Phys. Rev.E 54 (1996)2597.         [ Links ]

29. J. Huang, P. Lai, Physica A 281 (2000) 105.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons