SciELO - Scientific Electronic Library Online

 
vol.59 número2Ecuación de Boltzmann de discos rígidos auto-impulsados para peatones en contraflujoThe effects of the Bragg curve on the nuclear track formation in CR-39 polycarbonate, with the atomic force microscopy approach índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.59 no.2 México mar./abr. 2013

 

Investigación

 

Microwave assisted synthesis of CdS nanoparticles and their size evolution

 

I. A. López, A. Vázquez, and I. Gómez*

 

Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Laboratorio de Materiales I, Av. Universidad, Cd. Universitaria 66451, San Nicolás de los Garza, Nuevo León, México. e-mail: *idaliagomezmx@yahoo.com.mx

 

Recibido el 2 de mayo de 2012.
Aceptado el 7 de diciembre de 2012.

 

Abstract

The study of the size evolution of CdS nanoparticles in aqueous dispersion is presented in this paper. The sodium citrate was employed as stabilizer of CdS nanoparticles synthesized by microwave assisted synthesis. Analysis of this study was carried out by UV-Vis spectrophotometry, by comparison of the band gap energy using theoretical and empirical models. Results obtained show that the synthesis conditions produce CdS nanoparticles with diameters below of 6 nm, which remains stabilized by at least 14 days. These characteristics were confirmed by transmission electron microscopy. The X-ray diffraction pattern confirms cubic phase of the CdS nanoparticles.

Keywords: Microwaves; cadmium sulfide; nanoparticles; stabilization.

 

PACS: 81.07.-b

 

DESCARGAR ARTÍCULO DE FORAMTO PDF

 

References

1 . Y. Hao, Y. Cao, B. Sun, Y. Li, Y. Zhang, and D. Xu, Sol. Energy Mater. Sol. Cells 101 (2012) 107.         [ Links ]

2. G. Wei, M. Yan, L. Ma, and H. Zhang, Spectrochim. Acta A 85 (2012) 288.         [ Links ]

3. L. Ge and J. Liu, Mater. Lett. 65 (2011) 1828.         [ Links ]

4 . Y. Xi, C. Hu, C. Zheng, H. Zhang, R. Yang, and Y. Tian, Mater. Res. Bull. 45 (2010) 1476.         [ Links ]

5. T. Trindade, P. O'Brien, and N.L. Pickett, Chem. Mater. 13 (2001) 3843.         [ Links ]

6. J. Kim, Y. Kim, and H. Yang, Mater. Lett. 63 (2009) 614.         [ Links ]

7. M. Feng, Y. Chen, L. Gu, N. He, J. Bai, Y. Lin, and H. Zhan, Eur. Polym. J. 45 (2009) 1058.         [ Links ]

8. N.V. Hullavarad, and S.S. Hullavarad, Photonics Nanostruct 5 (2007) 156.         [ Links ]

9. S.M. Reda, Acta Materialia 56 (2008) 259.         [ Links ]

10. T. Zhai, Z. Gu, H. Zhong, Y. Dong, Y. Ma, H. Fu, Y. Li, and J. Yao, Cryst. Growth Des. 7 (2007) 488.         [ Links ]

11. B J.K. Dongre, V. Nogriya, and M. Ramrakhiani, Appl. Surf. Sci. 255 (2009) 6115.         [ Links ]

12. A. Phuruangrat, T. Thongtem, and S. Thongtem, Mater. Lett. 63 (2009) 1538.         [ Links ]

13. A. Tang, F. Teng, Y. Hou, Y. Wang, F. Tan, S. Qu, and Z. Wang, Appl. Phys. Lett. 96 (2010) 163112.         [ Links ]

14. S.J. Ikhmayies and R.N. Ahmad-Bitar, Appl. Surf. Sci. 255 (2009) 8470.         [ Links ]

15. N. Badera, B. Godbole, S.B. Srivastava, P.N. Vishwakarma, L.S. Chandra, D. Jain, M. Gangrade, T. Shripathi, V.G. Sathe, and V. Ganesan, Appl. Surf. Sci. 254 (2008) 7042.         [ Links ]

16. E. Caponetti, D.C. Martino, M. Leone, L. Pedone, M.L. Sal-adino, and V. Vetri, J. Colloid Interface Sci. 304 (2006) 413.         [ Links ]

17. T. Serrano, I. Gomez, R. Colas, and J. Cavazos, Colloids Surfaces A. Physicochem. Eng. Aspects 338 (2009) 20.         [ Links ]

18. R. Amutha, M. Muruganandham, G.J. Lee, and J.J. Wu, J. Nanosci. Nanotechnol. 11 (2011) 7940.         [ Links ]

19. S. Das, A.K. Mukhopadhyay, S. Datta, and D. Basu, Bull. Mater. Sci. 32 (2009) 1.         [ Links ]

20. H. Wang, P. Fang, Z. Chen, and S. Wang, Appl. Surf. Sci. 253 (2007) 8495.         [ Links ]

21. M. Pattabi and B.S. Amma, Sol. Energy Mater Sol. Cells 90 (2006) 2377.         [ Links ]

22. D. Philip, Physica E 41 (2009) 1727.         [ Links ]

23. W.W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15 (2003) 2854.         [ Links ]

24. L. Brus, J. Phys. Chem. 90 (1986) 2555.         [ Links ]

25. Y. De Smet, L. Deriemaeker, and R. Finsy, Langmuir 13 (1997) 6884.         [ Links ]

26. I.M. Lifshitz and V.V. Slyozov, 19 (1961) 35.         [ Links ]

27. C. Wagner, and Z. Elektrochem, Ber. Bunsenges Phys. Chem. 65 (1961) 581.         [ Links ]

28. Z. Hu, D.J. Escamilla-Ramírez, B.E. Heredia Cervera, G. Oskam, and P.C. Searson, J. Phys. Chem. B 109 (2005) 11209.         [ Links ]

29. Z. Hu, G. Oskam, R.L. Penn, N. Pesika, and P.C. Searson, J. Phys. Chem.B 107 (2003) 3124.         [ Links ]

30. D.V. Talapin, A.L. Rogach, M. Haase, and H. Weller, J. Phys. Chem.B 105 (2001) 12278.         [ Links ]

31. C.T. Tsai, D.S. Chuu, G.L. Chen, and S.L. Yang, J. Appl. Phys. 79 (1996) 9105.         [ Links ]

32. I. Sergiel, A. Mircñczyk, J.J. Koziol, and A. Defort, Acta Physica Polonica A 116 (2009) S-166.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons