Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.59 no.2 México mar./abr. 2013
Investigación
Formation of copper nanoparticles in mordenites with variable SiO2/Al2O3 molar ratios under redox treatments
V. Petranovskiia,*, E. Stoyanovb, V. Gurinc, N. Katadad, M.-A. Hernándeze, M. Avalosa, A. Pestryakovf, F. Chávez Rivasg, R. Zamorano Ulloag, and R. Portilloh
a Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, km 107 carretera Tijuana-Ensenada, Ensenada 22800, B.C., México. * Postal address: CNYN-UNAM, P.O. Box 439036, San Ysidro, CA 92143, USA Tel.: +52(646)-174-4602; fax: +52(646)-174-4603. e-mail address: vitalii@cnyn.unam.mx.
b Department of Chemistry, University of California, Riverside, California 92521.
c Research Institute for Physical Chemical Problems, Belarusian State University, Minsk 220080, Belarus.
d Department of Chemistry and Biotechnology, Tottori University, Tottori 680-8552, Japan.
e Departamento de Investigación en Zeolitas, Universidad Autónoma de Puebla, Puebla, México.
f Tomsk Polytechnic University, Tomsk 634050, Russia.
g Departamento de Física ESFM-IPN, Zacatenco, 07738. México, D.F.
h Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, Puebla, México.
Recibido el 14 de agosto de 2012.
Aceptado el 13 de diciembre de 2012.
Abstract
A series of protonated copper-containing mordenites with different SiO2/Al2O3 molar ratios (MR) in the range of 10≤MR≤206 was prepared by ion exchange in copper nitrate aqueous solution. The electron paramagnetic resonance of hydrated copper Mordenites series testifies of several Cu2+ ions sites. Hydrogen reduction of copper ions incorporated into the mordenites was shown to lead to different reduced copper species including small metallic particles inter alia. The structural properties and acidity of mordenites were characterized. The optical appearance of the copper particles showed strong but nonmonotonic dependence on the MR value, in line with the variation in acidity of this series of mordenites. Correlations between mordenite properties and the formation of different reduced copper species are discussed.
Keywords: Mordenite; SiO2/Al2O3 molar ratio; Copper; Nanoparticles; Plasmon resonance.
Resumen
Un conjunto de zeolitas mordenitas protonadas e intercambiadas con cobre y con diferentes relaciones molares (RM) de SiO2/Al2O3 en el intervalo 10 ≤MR≤ 206 ha sido preparado por intercambio iónico en solución acuosa de nitrato de cobre. La resonancia paramagnética electrónica del conjunto de mordenitas con cobre en su estado hidratado muestra varios sitios de iones Cu2+. La reducción por hidrógeno de los iones de cobre incorporados en las mordenitas ha demostrado que la reducción produce diferentes especies de cobre, incluyendo la reducción de pequerñas partículas metálicas inter alia. Se han caracterizado las propiedades estructurales y la acidez del conjunto de mordenitas intercambiadas. La serial (óptica de nanoparticulas de cobre mostró fuerte dependencia monotónica, pero no con el valor RM, en línea con la variación de la acidez de este conjunto de mordenitas. Las correlaciones entre las propiedades de las mordenitas y la formación de diferentes especies reducidas de cobre son discutidas.
Descriptores: Mordenita; relación molar SiO2/A12O3; Cobre; EPR; Nanopartículas; Resonancia Plasmónica.
PACS: 78.67.Sc; 76.30.-v; 78.40.-q
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgments
We greatly benefited from many discussions and collaborations with Dr. Yoshihiro Sugi, Dr. Karl Seff, Dr. Robert Marzke and Dr. Sergey Romanov. We wish to thank Jose Victor Tamariz Flores for his experimental work on measurements of Cu content. The authors would also like to express their gratitude to Francisco Ruiz, Eloisa Aparicio, Eric Flores and Juan Peralta for the invaluable technical support. The research reported in this paper was supported by grant IN114603 3 from UNAM-PAPIIT, grant 102907, CONACYT, Mexico, and grant RFBR 090300347-a, Russia. The authors F. Chavez Rivas and R. Zamorano Ulloa acknowledge support from COFAA-IPN-Mexico.
References
1. B. C. Gates, Chem. Rev. 95 (1995) 511. [ Links ]
2. K. Seff, and T. Sun, Chem. Rev. 94 (1994) 857. [ Links ]
3. G. Stucky, and J. Mac Dougall, Science 247 (1990) 669. [ Links ]
4. V.S. Gurin, N.E. Bogdanchikova, and V.P. Petranovskii, J. Phys. Chem.B 104 (2000) 12105. [ Links ]
5. P.P. Edwards, P.A. Anderson, and J.M. Thomas, Acc. Chem. Res. 29 (1996) 23. [ Links ]
6. Yu.A. Alekseev, V. Bogomolov, T. Zhukova, V. Petranovskii, and S. Kholodkevich, Sov. Phys. Solid State 24 (1982) 1384. [ Links ]
7. T. Sun, K. Seff, N.H. Heo, and V. Petranovskii, Science 259 (1993) 495. [ Links ]
8. Y. Park, Y.S. Lee, and K.B. Yoon, J. Am. Chem. Soc. 115 (1993) 12220. [ Links ]
9. J. Ogden, N. Bogdanchikova, J. Corker, and V. Petranovskii, Eur. J. Phys. D 9 (1999) 605. [ Links ]
10. D. W. Breck, Zeolite Molecular Sieves. Structure, Chemistry and Use (A Wiley-Interscience Publication, John Wiley & Sons, New York, 1974). [ Links ]
11. Atlas of Zeolite Structure Types, 5th revised edition, (Ch. Baerlocher, W. M. Meier and D. H. Olson, Eds. 2000). Available on-line: http://www.iza-structure.org/databases/. [ Links ]
12. H. Yahiro, and M. Iwamoto, Appl. Catal. A 222 (2001) 163. [ Links ]
13. C. Torre-Abreu, C. Henriques, F.R. Ribeiro, G. Delahay, and M.F. Ribeiro, Catal. Today 54 (1999) 407. [ Links ]
14. V.I. Parvulescu, P. Grange, and B. Delmon, Catal. Today 46 (1998) 233. [ Links ]
15. N. Bogdanchikova, V. Petranovskii, R. Machorro, Y. Sugi, V.M. Soto, and S. Fuentes, Appl. Surf. Sci. 150 (1999) 58. [ Links ]
16. N. Bogdanchikova, V. Petranovskii, S. Fuentes, E. Paukshtis, Y. Sugi, and A. Licea-Claverie, Mater. Sci. Eng. A 276 (2000) 236. [ Links ]
17. S.Y. Chung, S.H. Oh, M.H. Kim, I.S. Nam, and Y.G. Kim, Catal. Today 54 (1999) 521. [ Links ]
18. B.R. Goodman, K.C. Hass, W.F. Schneider, and J.B. Adams, Catal. Lett. 68 (2000) 85. [ Links ]
19. M.P. Attfield, S.J. Weigel, and A.K. Cheetham, J. Catal. 170 (1997) 227. [ Links ]
20. P.A. Jacobs, W. de Wilde, R.A. Shoonheidt, and J.B. Uytterhoven, J. Chem. Soc. Faraday Trans. I 72 (1976) 1221. [ Links ]
21. V. Gurin, N. Bogdanchikova, and V. Petranovskii, Mater. Sci. Eng. C 18 (2001)37. [ Links ]
22. V. Petranovskii, V. Gurin, N. Bogdanchikova, A. Licea-Claverie, Y. Sugi, and E. Stoyanov, Mater. Sci. Eng. A 332 (2002) 174. [ Links ]
23. N. Katada, H. Igi, J.-H. Kim, and M. Niwa, J. Phys. Chem. B 101 (1997) 5969. [ Links ]
24. H. Igi, N. Katada, M. Niwa, in: M.M.J. Treacy, B.K. Marcus, M.E. Bisher, J.B. Higgins, Materials Research Society 4 (1999) 2643. [ Links ]
25. K. S. W. Sing et al., Pure Appl. Chem. 603 (1985) 57. [ Links ]
26. V. Petranovskii et al., Stud. Surf. Sci. Catal. 142 (2002) 815. [ Links ]
27. J. W. Akitt, Progress in NMR Spectr. 21 (1989) 1. [ Links ]
28. N. Katada, Y. Kageyama, and M. Niwa, J. Phys. Chem. B 104 (2000) 7561. [ Links ]
29. S. C. Larsen, A., Aylor, A. T., Bell, and J. A. Reimer, J. Phys. Chem. 98 (1994) 11533. [ Links ]
30. P. J. Carl, and S. C. Larsen, J. Catal. 182 (1999) 208. [ Links ]
31. P. J. Carl, and S. C. Larsen, J. Phys. Chem. B. 104 (2000) 6568. [ Links ]
32. W. Froncisz, and S. H. James, J. Chem. Phys. 73 (1980) 3123. [ Links ]
33. C. Oliva, et al., J. Chem. Soc., Faraday Trans. 93 (1997) 2603. [ Links ]
34. F. Chavez Rivas, V. Petranovskii and R. Zamorano Ulloa, Rev. Mex. Fls. 56 (2010) 328. [ Links ]
35. E. Castañeda Miranda, Tesis Licenciatura "Caracterización de la zeolita Cu-ZSM5 por EPR y DRX para razones molares de 20 y 30". Febrero del 2005. ESFM-IPN. [ Links ]
36. A.B.P. Lever, Inorganic Electronic Spectroscopy, 2nd Edition, Elsevier, Amsterdam, 1984. [ Links ]
37. F.S. Hadzhieva, V.F. Anufrienko, T.M. Yurieva, V.N. Vorobiev, T.P. Minyukova, React. Kinet. Catal. Lett. 30 (1986) 85. [ Links ]
38. G.T. Palomino, P. Fisicaro, S. Borgida, A. Zecchina, E. Giamello, and C. Lamberti, J. Phys. Chem. B 104 (2000) 4064. [ Links ]
39. R.M. Friedman, J.J. Freeman, and F.W. Lytle, J. Catal. 55 (1978) 10. [ Links ]
40. B.J. Hathaway, Coord. Chem. Rev. 52 (1983) 87. [ Links ]
41. C.J. Ballhausen, Introduction to ligand field theory. (McGrawHill Book Company Inc., New York, 1963). [ Links ]
42. R. Debnath and K.S. Das, Chem. Phys. Lett. 155 (1989) 52. [ Links ]
43. P.D. Yang et al., Science 282 (1998) 2244. [ Links ]
44. H.T. Wang, Z.B. Wang, L.M. Huang, A. Mitra, B. Holmberg, and Y.S. Yan, J. Mater. Chem. 11 (2001) 2307. [ Links ]
45. Y. Kuroda, S. Konno, Y. Yoshikawa, H. Maeda, Y. Kubozono, H. Hamano, R. Kumashiro, and M. Nagao, J. Chem. Soc. Faraday Trans. 93 (1997) 2125. [ Links ]
46. B.G. Ershov, E. Janata, and A. Henglein, Radiat. Phys. Chem. 39 (1992) 123. [ Links ]
47. J. Khatouri, M. Mostafavi, J. Amblard, and J. Belloni, Chem. Phys. Lett. 191 (1992) 351. [ Links ]
48. G.A. Ozin, H. Huber, D. Mcintosh, S. Mitchell, J.G. Norman Jr., and L. Noodleman, J. Am. Chem. Soc. 101 (1979) 3504. [ Links ]
49. G.A. Ozin, S. Mitchell, D.F. Mcintosh, S.M. Mattar, and J. García-Prieto, J. Phys. Chem. 87 (1983) 4651. [ Links ]
50. I. Lisiecki, and M.P. Pileni, J. Phys. Chem. 99 (1995) 5077. [ Links ]
51. J.F. Janak, A.R. Williams, V.L. Moruzzi, Phys. Rev. B 11 (1975) 1522. [ Links ]
52. Y.I. Petrov. Clusters and Small Particles, Nauka, Moscow (1986). [ Links ]
53. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995). [ Links ]
54. M.P. Attfield, S.J. Weigel, and A.K. Cheetham J. Catal. 172 (1997) 274. [ Links ]
55. B. Wichterlova, J. Dedecek, Z. Sobalyk, A. Vondrova, and K. Kliery, J. Catal. 169 (1997) 194. [ Links ]
56. Y. Kuroda, Y. Yoshikawa, S. Emura, R. Kumashiro, and M. Nagao, J. Phys. Chem. B 103 (1999) 2155. [ Links ]
57. M. Niwa, K. Suzuki, N. Katada, T. Kanougi, and T. Atoguchi, J. Phys. Chem. B 109 (2005) 18749. [ Links ]