SciELO - Scientific Electronic Library Online

 
vol.59 número3Solución general de la ecuación de Navier-Stokes para describir la dinámica de un fluido viscoso homogéneo en una tubería abiertaBound state solutions of deformed generalized Deng-Fan potential plus deformed Eckart potential in D-dimensions índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.59 no.3 México may./jun. 2013

 

Research

 

Monodisperse magnetic nanoparticles: Effects of surfactants on the reaction between iron acetylacetonate and platinum acetylacetonate

 

K. Chokprasombatª, C. Sirisathitkula,*, P. Hardingª, S. Chandarakb, and R. Yimnirunb

 

ª Molecular Research Unit, School of Science, Walailak University, Nakhon Si Thammarat 80161,Thailand.*e-mail: schitnar@wu.ac.th

b School of Physics, Institute of Science, Suranaree University of Technology and Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand, Tel: +66-75-672-945

 

Received 16 October 2012;
Accepted 6 February 2013

 

Abstract

Magnetic properties of monodisperse nanoparticles for ultrahigh density recording and biomedical applications are sensitive to their shape and size distributions. These attributes are, in turns, dictated by several parameters during the synthesis and heat treatments. In this work, monodisperse FePt-based magnetic nanoparticles around 5 nm in diameter were synthesized by the reaction between iron acetylacetonate (Fe(acac)3) and platinum acetylacetonate (Pt(acac)2) in benzyl ether. X-ray absorption near-edge structure (XANES) spectra agreed with transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) that as-synthesized nanoparticles were composed of Pt-rich nuclei and iron oxides. Whereas their composition and size was not sensitive to the variation in the amount of surfactants (oleic acid and oleylamine), the nanoparticles exhibited a larger variation in shape with the increase in each surfactant from 1.5 to 4.5 mmol. After annealing in argon atmosphere at 650°C for 1 hour, the nanoparticles tended to agglomerate. Higher amounts of surfactants surrounded the nanoparticles apparently allowed more sintering because the decomposed carbon from the excess surfactants facilitated the reduction ofiron oxides. More Fe in the large annealed particles then resulted in ferromagnetic properties. By contrast, the ferromagnetic behavior and the highest coercivity were obtained without such agglomeration in the case ofannealed particles synthesized by using the minimum surfactants.

Keywords: Magnetic nanoparticles; Modified polyol process; Oleic acid; Oleylamine.

 

PACS: 75.75.-c; 75.50.Bb

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This work is financially supported by the National Electronics and Computer Technology Center, National Science and Technology Development Agency and Industry/University Cooperative Research Center (I/UCRC) in HDD Component, the Faculty of Engineering, Khon Kaen University with approval of Seagate Technology (Thailand). The authors would like to thank Dr. P. Jantaratana of Kasetsart University for providing VSM facility.

 

References

1. B.D. Terris, and T. Thomson, J. Phys. D: Appi. Phys. 38 (2005) R199.         [ Links ]

2. J. Lopez, F. J. Espinoza-Beltran, G. Zambrano, M.E. Gomez, and P. Prieto, Rev. Mex. Fis. 58 (2012) 293.         [ Links ]

3. S. Sun, Adv. Mater. 18 (2006) 393.         [ Links ]

4. A.C.C. Yu, M. Mizuno, Y. Sasaki, and H. Kondo, Appi. Phys. Lett. 85 (2004) 6242.         [ Links ]

5. K.E. Elkins et al, Nano Lett. 3 (2003) 1647.         [ Links ]

6. C. Liu et al, J. Phys. Chem. B 108 (2004) 6121.         [ Links ]

7. V. Nandwana, K.E. Elkins, and J.P. Liu, Nanotechnology 16 (2005) 2823.         [ Links ]

8. M. Nakaya, M. Kanehara, and T. Teranishi, Langmuir 22 (2006) 3485.         [ Links ]

9. L.C. Varanda, and M. Jafelicci, Jr., J. Am. Chem. Soc. 128 (2006) 11062.         [ Links ]

10. V. Nandwana, K.E. Elkins, N. Poudyal, G.S. Chaubey, K. Yano, and J.P. Liu, J. Phys. Chem. C 111 (2007) 4185.         [ Links ]

11. K.E. Elkins, G.S. Chaubey, V. Nandwana, and J.P. Liu, J. NanoRes. 1 (2008) 23.         [ Links ]

12. W. Beck, Jr., C.G.S. Souza, T.L. Silva, M. Jafelicci, Jr., and L.C. Varanda, J. Phys. Chem. C 115 (2011) 10475.         [ Links ]

13. K. Chokprasombat, C. Sirisathitkul, P. Harding, S. Chandarak, and R. Yimnirun, J. Nanomater. 2012 (2012) 758429.         [ Links ]

14. S.A. Sebt, S.S. Parhizgar, M. Farahmandjou, P. Aberomand, and M. Akhavan, J. Supercond. Nov. Magn. 22 (2009) 849.         [ Links ]

15. R. Harpeness, and A. Gedanken, J. Mater. Chem. 15 (2005) 698.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons