SciELO - Scientific Electronic Library Online

 
vol.59 número3Bound state solutions of deformed generalized Deng-Fan potential plus deformed Eckart potential in D-dimensionsA generating function for the spherical harmonics in p dimensions índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.59 no.3 México may./jun. 2013

 

Research

 

Mean field theory of inhomogeneous fluid mixtures

 

J. G. Segovia-López*, A. Zamora**, J. Antonio Santiago***

 

* División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Km 1 Carretera Cunduacán-Jalpa, A.P. 24, 86690, Cunduacán, Tabasco, México.

** Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana - Cuajimalpa, México D.F. 01120, México.

*** Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana - Cuajimalpa, México D.F. 01120, México.

 

Received 2 February 2012;
Accepted 29 January 2013

 

Abstract

By using density functional theory, we analyze an inhomogeneous fluid mixture composed of an arbitrary number of species within mean field approximation. Under the assumption that the interfacial region behaves as an elastic continuous medium, we calculate the stress tensor and the equilibrium grand potential of the system for different surfaces. It is found that, unlike the single component system, there exist multiple coexistence regions induced by the diversity of interaction potentials between the different species. Surface properties are calculated for a step-like density profile and consistency with the monocomponent system is verified for both the same formalism and other approaches at the level of surface tension.

Keywords: Stress tensor; density functional theory; surface tension; density profile.

 

PACS: 05.20.Jj; 64.75.Cd; 68.35.Md

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

The authors wish to thank V. Romero-Rochín for helpful comments and stimulating discussion. This work was supported partially by PFICA-UJAT under grant UJAT-2009-C05-61 and by PROMEP-MEXICO (Contract No. 364 UJAT-CA-15).

 

References

1. P. Hohenberg and W. Kohn, Phys. Rev. B 136 (1964) 864;         [ Links ] W. Kohn and L. J. Sham, Phys. Rev. A 140 (1965) 1133;         [ Links ] N. D. Mermin, Phys. Rev. A 137 (1965) 1441.         [ Links ]

2. R.Evans, Adv. Phys. 28 (1979) 143.         [ Links ]

3. J. P. Hansen and H. Löwen, Effective Interactions for Large-Scale Simulations of Complex Fluids, in "Molecular Simulations for the Next Decade", edited by M. Mareschal and P. Nielaba (Springer Verlag, Berlin, 2002);         [ Links ] J. P. Hansen and H. Löwen, Annu. Rev. Phys. Chem. 51 (2000) 209.         [ Links ]

4. H. Löwen, J. Phys.: Condens. Matter 14 (2002) 11897;         [ Links ] M. Schmidt, J. Phys.: Condens. Matter 15 (2003) S101.         [ Links ]

5. A. Esztermann, H. Reich, and M. Schmidt, Phys. Rev. E 73 (2006) 011409.         [ Links ]

6. J. K. Percus, J. Math. Phys. 37 (1996) 1259.         [ Links ]

7. V. Romero-Rochín and J. K. Percus, Phys. Rev. E 53 (1996) 5130.         [ Links ]

8. J. G. Segovia-López and V. Romero-Rochín, Phys. Rev. E 73 (2006) 021601.         [ Links ]

9. J. G. Segovia-López, A. Zamora, and J. A. Santiago, J. Chem. Phys. 135 (2011)064102.         [ Links ]

10. M. Sahimi and B. N. Taylor, J. Chem. Phys. 95 (1991) 6749.         [ Links ]

11. J. J. C. Hsu, N. Nagarajan, and R. L. Robinson Jr., J. Chem. Eng. Data 30 (1985) 485;         [ Links ] N. Nagarajan and R. L. Robinson Jr., J. Chem. Eng. Data 31 (1986) 168;         [ Links ] N. Nagarajan and R. L. Robinson Jr., J. Chem. Eng. Data 32 (1987) 369.         [ Links ]

12. H. Greberg, G. V. Paolini, J. Satherley, R. Penfold, and S. Nordholm, J. Colloid Interface Sci. 235 (2001) 334.         [ Links ]

13. T. Hiester, S. Dietrich, and K. Mecke, J. Chem. Phys. 125 (2006) 184701.         [ Links ]

14. V. Romero-Rochín, C. Varea, and A. Robledo, Mol. Phys. 80 (1993) 821.         [ Links ]

15. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon Press, Oxford, 1984).         [ Links ]

16. H. Goldstein, C. Poole, and J. Safko, Classical Mechanics (Addison Wesley, USA, 2002).         [ Links ]

17. E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (Dover, New York, 1944).         [ Links ]

18. S. Dietrich and M. Napiorkowski, Physica A 177 (1991) 437;         [ Links ] M. Napiorkowski and S. Dietrich, Phys. Rev. E 47 (1993) 1836;         [ Links ] M. Napiorkowski and S. Dietrich, Z. Phys. B 97 (1995) 511;         [ Links ] K. R. Mecke and S. Dietrich, Phys. Rev. E 59 (1999) 6766;         [ Links ] K. Mecke and S. Dietrich, J.Chem. Phys. 123 (2005) 204723.         [ Links ]

19. W. Helfrich, Z. Naturforsch. Teil C 28 (1973) 693.         [ Links ]

20. C. Varea and A. Robledo, Physica A 220 (1995) 33;         [ Links ] C. Varea and A. Robledo, Mol. Phys. 85 (1995) 477.         [ Links ]

21. D. G. Triezenberg and R. Zwanzig, Phys. Rev. Lett. 28 (1972) 1183.         [ Links ]

22. R. C. Tolman, J. Chem. Phys. 17 (1949) 333.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons