SciELO - Scientific Electronic Library Online

 
vol.59 número3Mean field theory of inhomogeneous fluid mixturesState space second order filter estimation índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.59 no.3 México may./jun. 2013

 

Research

 

A generating function for the spherical harmonics in p dimensions

 

G.F. Torres del Castillo

 

Departamento de Física Matemática, Instituto de Ciencias, Universidad Autónoma de Puebla,72570 Puebla, Pue., México.

 

Received 13 November 2012;
Accepted 25 January 2013

 

Abstract

A generating function for the spherical harmonics in three or more dimensions is given. This function allows us to find in a simple manner the explicit expressions for the spherical harmonics in three dimensions. The generating functions for the spherical harmonics given here are analogous to certain well-known generating functions for solutions of the wave equation.

Keywords: Spherical harmonics; generating functions; Laplace equation; wave equation.

 

Resumen

Se da una función generatriz para los armónicos esféricos en tres o más dimensiones. Esta función permite hallar en una forma simple las expresiones explícitas para los armónicos esféricos en tres dimensiones. Las funciones generatrices para los armónicos esféricos dadas aquí son análogas a ciertas funciones generatrices bien conocidas para soluciones de la ecuación de onda.

Descriptores: Armónicos esféricos; funciones generatrices; ecuación de Laplace; ecuación de onda.

 

PACS: 02.30.Gp; 02.30.Jr; 02.30.Uu

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. J.D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).         [ Links ]

2. D.J. Griffiths, Introduction to Quantum Mechanics (Prentice Hall, Upper Saddle River, NJ, 1995).         [ Links ]

3. D.M. Brink and G.R. Satchler, Angular Momentum, 3rd ed. (Oxford University Press, Oxford, 1993).         [ Links ]

4. H. Hochstadt, The Functions of Mathematical Physics (Dover, New York, 1986). Chap. 6.         [ Links ]

5. D.A. Varshalovich, A.N. Moskalev and V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988).         [ Links ]

6. M. Bander and C. Itzykson, Rev. Mod. Phys. 38 (1966) 330.         [ Links ]

7. A.M. Perelomov and Ya.B. Zel'dovich, Quantum Mechanics: Selected Topics (World Scientific, Singapore, 1998).         [ Links ]

8. G.F. Torres del Castillo and J.L. Calvario Acócal,Rev. Mex. Fis. 53 (2007) 407.         [ Links ]

9. J.N. Goldberg, A.J. Macfarlane, E.T. Newman, F. Rohrlich and E.C.G. Sudarshan, J. Math. Phys. 8 (1967)2155.         [ Links ]

10. G.F. Torres del Castillo, 3-D Spinors, Spin-weighted Functions and their Applications (Birkhäuser, Boston, 2003).         [ Links ]

11. E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, 4th ed. (Cambridge University Press, Cambridge, 1996).         [ Links ]

12. W.W. Bell, Special Functions for Scientists and Engineers (Dover, New York, 2004). Sect. 3.3        [ Links ]

13. C. Frye and C.J. Efthimiou, arXiv:1205.3548v1 [math.CA] 2012.         [ Links ]

14. N.N. Lebedev, Special Functions and their Applications (Dover, New York, 1972).         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons