Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.59 no.3 México may./jun. 2013
Research
State space second order filter estimation
J.J. Medelª and M. T. Zagacetab
a Computer Research Centre, Venus S/N, Col. Nueva Industrial Vallejo, 07738.
b Mechanical and Engineering School, Av. De las Granjas N.- 682 Col. Santa Catarina, e-mail: jjmedelj@yahoo.com.mx; mtza79@yahoo.com.mx
Received 9 April 2012;
Accepted 26 February 2013
Abstract
The second order stochastic filter is based on difference models with uncorrelated innovation conditions structured in state space having stationary properties through a surface with bounded drift around the mean value. This allows building recursive estimation without generality lost and basic properties over the stochastic state space surface with unknown gains viewed as a black-box scheme. The spatial region generated gave an approximation to real parametres set with a sufficient convergence rate in a probability sense. The results were applied in adaptive identification states with a high convergence rate, observed in the functional error described illustratively in simulations. This technique was developed over the smooth slide surface having advantages over other traditional filters.
Keywords: State space estimation; least squares method; instrumental variable; second probability moment convergence rate.
PACS: 02.50.-r; 02.50.Ey; 02.70Bf; 02.70.-c.
DESCARGAR ARTÍCULO EN FORMATO PDF
References
1. M. Castellanos, Rev. Mex. Fis. 49 (2003) 429-438. [ Links ]
2. A. S. Shcherbakov and A. Aguirre, Rev. Mex. Fis. 54 (2008) 368-375. [ Links ]
3. C. Breithaupt, and R. Martin, IEEE Transactions on Audio, Speech, and Language Processing 19 (2011) 277-289. [ Links ]
4. C. Jian-Zhong, J. Huang, and C. Zhi-Ming, Forecasting of target air route based on weighted least squares method Control Conference 29th Chinese, 40 (2010) 3144-3147. [ Links ]
5. D. Vecchia, Una Estructura en Cascada FIR para Predicción Lineal Adaptiva 10 (2003) 54-59. [ Links ]
6. D. Belie, and F. Melkebeek, Energy, Syst. & Autom., G Univ., Ghent, Belgium 40 (2010) 50-55. [ Links ]
7. F. Kwun Wanga, and C. Wen Leea, An M-Estimator for Estimating the Extended Burr Type III Parametres with Outliers Communications in Statistics - Theory and Methods 3 (2010) 304-322. [ Links ]
8. F. Antreich, J. Nossek, A. Seco, and L. Gonzalo Swindle-hurst, Smart Antennas, WSA International ITG on Digital Object Identifier 40 (2008) 16-20. [ Links ]
9. H. Yanga, X. Changa, and D. Liua, Communications in Statistics - Theory and Methods 38 (2009) 285-292. [ Links ]
10. H. Kirshner, S. Maggio, and M. Unser, IEEE Transactions on Signal Processing 59 (2011) 4620-4633. [ Links ]
11. I. Morales, and M. González, Comparación de las técnicas de análisis de variancia y regresión lineal múltiple: aplicación a un experimento de almacenamiento de mango, Centro Nacional de Ciencia y Tecnología de Alimentos, UCR, Costa Rica, 4 (2003) 78-83. [ Links ]
12. J. J. Medel, M. T. Zagaceta Á, Rev. Mex. Fis. 58 (2012) 127130. [ Links ]
13. L. Chengyu, N. Hovakimyan, C. Woolsey, and H. Guoqiang, Estimation of an Affine Motion American Control Conference St. Louis, MO, USA 40 (2009) 5058-5090. [ Links ]
14. M. S. Ahmad, O. Kukrer, and A. Hocanin, IEEE InternationalSymposium 1 (2010) 482-884. [ Links ]
15. S. Chaturvedi, V. Gupta, G. Sanchez, and N. Mukunda, Rev. Mex. Fis. 57 (2011) 146-153. [ Links ]
16. S. Sezginer and P. Bianchi, IEEE Transactions on Audio, Speech, and Language Processing 56 (2008) 964-979. [ Links ]
17. T. Narumi, M. Suzuki, Y. Hidaka, T. Asai, and S. Kai, Phys. Rev.E 84 (2011) 1-4. [ Links ]
18. V. Valerii, S. Fedorov, L. Leonov, Communications in Statistics - Theory and Methods 33 (2004) 2627-2657. [ Links ]
19. H Nyquist, Certain Topics in Telegraph Transmisson Theory, AIEE (Dan Lavry of Lavry Engineering Inc 1928). [ Links ]
20. K. Ogatta, Sistemas de Control en Tiempo Discreto 2 (1995). [ Links ]