SciELO - Scientific Electronic Library Online

 
vol.59 número4Element distribution imaging in rat kidney using a 2D rapid scan EDXRF deviceOn polarization of the fluorescence in erbium-doped fibers índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.59 no.4 México jul./ago. 2013

 

Research

 

Collinear inelastic collisions of an atom and a diatomic molecule using operator methods

 

T. Wendlera, J. Récamierb, and M. Berrondoa

 

a Dept. Physics and Astronomy, Brigham Young University, Provo, UT84602 USA.

b Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, Cuernavaca, Morelos 62251, México.

 

Received 21 January 2013
Accepted 21 February 2013

 

Abstract

We calculate transition probabilities between vibrational levels of a diatomic molecule induced by an incident atom. Our prototype model is constructed treating the relative translation of the colliding species as a classical variable. The vibrational states of the diatomic molecule are treated quantum mechanically in terms of the evolution operator without involving wave functions. The corresponding equations of motion are coupled quasi-classically. For illustration purposes we present applications to the time dependence of transition probabilities for different initial and final states as well as a canonical ensemble of initial conditions.

Keywords: Inelastic; collisions; Lie; algebraic; harmonic; oscillator.

 

Resumen

Calculamos probabilidades de transición entre estados vibracionales de una molécula diatómica inducidas por un átomo incidente. El modelo prototipo trata el movimiento de traslación relativo como una variable clásica. Los estados vibracionales de la molecula diatómica se tratan cuánticamente en términos del operador de evolucián, sin involucrar funciones de onda. Las ecuaciones de movimiento correspondientes se acoplan cuasi-clásicamente. A manera de ilustración presentamos aplicaciones a la dependencia temporal de probabilidades de transición para diferentes estados inicial y final así como para un ensamble canónico de condiciones iniciales.

Descriptores: Colisiones; inelásticas; álgebras; Lie; oscilador; armónico.

 

PACS: 03.65.Fd; 02.30.Tb; 42.50

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. M.S. Child, Molecular Collision Theory (Dover, New York, 1996).         [ Links ]

2. D. Seacrest and B.R. Johnson, J. Chem. Phys. 45 (1966) 4556.         [ Links ]

3. D. Rapp and T. Kassal, J. Chem. Phys. 48 (1968) 5287.         [ Links ]

4. D. Rapp, J. Chem. Phys. 32 (1960) 375.         [ Links ]

5. R.E. Roberts, J. Chem. Phys. 53 (1970) 1937.         [ Links ]

6. G.W.F. Drake and C.S. Lin, J. Phys. B: Atom. Molec. Phys. 7 (1974) 398.         [ Links ]

7. B. Gazdy and D.A, Micha, J. Chem. Phys. 82 (1985) 4926.         [ Links ]

8. J. Recamier, Intl. J. Quantum Chem. 24 (1990) 655.         [ Links ]

9. J. Recamier and M. Berrondo, Mol. Phys. 73 (1991) 831.         [ Links ]

10. M. Berrondo, J. Recamier, Chem. Phys. Lett. 503 (2010) 180.         [ Links ]

11. Y. Alhassid and R.D. Levine, Phys. Rev. A 18 (1978) 89.         [ Links ]

12. J. Wei and E. Norman, J. Math. Phys. 4 (1963) 575.         [ Links ]

13. J. Wei and E. Norman, Proc. Am. Math. Soc. 15(1964) 575.         [ Links ]

14. B. Yang, K. Han, and S. Ding, J. Math. Chem. 28 (2000) 247.         [ Links ]

15. J. Recamier, B. Gazdy, and D.A. Micha, Chem. Phys. Lett. 119 (1985) 383.         [ Links ]

16. T. Wendler and M. Berrondo, to be published.         [ Links ]

17. A. Frank, R. Lemus, J. Recamier and A. Amaya, Chem. Phys. Lett. 193 (1992) 176.         [ Links ]

18. F. Iachello and R.D. Levine, Algebraic Theory of Molecules (Oxford University Press, Oxford, England 1995).         [ Links ]

19. B. Wybourne, Classical Groups for Physicists (Wiley, New York1974).         [ Links ]

20. E. Merzbacher, Quantum Mechanics (3rd edn.), (Wiley, New York, 1998).         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons