Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.59 no.5 México sep./oct. 2013
Investigación
Metallic behaviour at YBaCuO7/Zas interfaces (G=Ga, Al)
R. Torres and R. Baquero
Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México D. F. 07000, México. e-mail: rbaquero@fis.cinvestav.mx.
Received 25 September 2012
Accepted 21 March 2013
Abstract
We present the electronic band structure of the interfaces YBa2Cu3O7/GaAs (direct gap) and YBa2Cu3O7/A1As (indirect gap) in different configurations calculated using the Density Functional Theory as in the Wien2k code within the local density approximation. We have projected the density of states at the atomic layers forming the interface. We concentrated on the semiconductor side. The four first atomic layers in the semiconductor side of the interface present a clear metallic behaviour. We found for both semiconductors considered that it converges towards the bulk atomic-layer projected density of states a few atomic layers from the interface. We considered an ideal non-reconstructed interface in the (001) direction first and let it relax using the corresponding option in the Wien2k code. The behaviour does not change in an important way and we found but small deviations from the ideal case in the Density of States of the relaxed interface. It is important to relax the interface since the metallic behaviour of the semiconductor side of the could have been suppressed which is the most interesting result of this work. The behaviour at the interface is interesting and could be used in several technological applications and it opens, for example, the possibility to induce superconductivity on the semiconductor side of the metal/semiconductor interface.
Keywords: YBaCuO7; semiconductors; interfaces; electronic structure.
PACS: 31.15.E-; 73.20.-r; 73.61.Ey; 74.72.-h
DESCARGAR ARTÍCULO EN FORMATO PDF
References
1. K. B. Bhasin, S. S. Toncich, C. M. Chorey, R. R. Bonetti, and A. E. Williams, IEEE MTT-S Dig. 1 (1992) 481. [ Links ]
2. D. J. Frank, Cryogenics 30 (1990) 996. [ Links ]
3. C. Castellana, F. Giazotto, M. Governale, F. Taddei, and F. Beltram, Appl. Phys. Lett. 88 (2006) 052502. [ Links ]
4. H. Sasakura et al., Phys. Rev. Lett. 107 (2011) 157403. [ Links ]
5. M. McColl, M. F. Millea, and A. H. Silver, Appl. Phys. Lett. 23 (1973) 263. [ Links ]
6. U. Ghoshal, H. Kroger and T. Van Duzer, IEEE Trans. Appl. Supercond. 3 (1993)2315. [ Links ]
7. U. Ghoshal, H. Kroger, US Patent 5388068, (1995). [ Links ]
8. T. Van Duzer, Cryogenics 28 (1988) 527. [ Links ]
9. Z. Y. Shen, P. Pang, C. Wilker, D. B. Laubacher, W. L. Holstein, C. F. Carter, and M. Adlerstein. IEEE Trans. Appl. Supercond. 3 (1993) 2832. [ Links ]
10. M. K. Wu et al., Phys. Rev. Lett. 58 (1987) 908. [ Links ]
11. B. D. Hunt, M. C. Foote and L. Bajuk, IEEE Trans. Magn. 27 (1991) 848. [ Links ]
12. S. W. Han, S. Tripathy, P. F. Miceli, E. Badica, M. Covington, L. H.Greene, M. Aprili, Jpn. J. Appl. Phys. 42 (2003) 1395. [ Links ]
13. C. Acha, J. Phys. D: Appl. Phys. 44 (2011) 345301. [ Links ]
14. U. Schwingenschlögl and C. Schuster, Europhys. Lett. 77 (2007) 37007 [ Links ]
15. U. Schwingenschlögl and C. Schuster, Appl. Phys. Lett. 90 (2007) 192502 [ Links ]
16. C. Schuster and U. Schwingenschlögl, J. Appl. Phys. 102 (2007) 113720. [ Links ]
17. K. Sakuta, M. Iyori, T. Kobayashi, M. Matsui and M. Nakajima, IEEE Trans. Magn. 27 (1991) 1361. [ Links ]
18. Z. Wang, S. Tsukimoto, M. Saito and Y. Ikuhara, J. Appl. Phys. 106(2009)093714 [ Links ]
19. S. Nazir and U. Schwingenschlögl, Appl. Phys. Lett. 99 (2011) 073102. [ Links ]
20. M. L. Cohen, Phys. Rev. 134 (1964) A511. [ Links ]
21. M. L. Cohen, Rev. Mod. Phys. 36 (1964) 240. [ Links ]
22 . S. Das Sarma, J. Fabian, X. Hu, and I. Zutic, IEEE Trans. Magn. 36 (2000) 2821 [ Links ]
23. P. Hohenberg and W. Kohn, Phys. Rev. 136 (1964) B864. [ Links ]
24. W. Kohn and L. J. Sham, Phys. Rev. 140 (1965) A1133. [ Links ]
25. G. K. H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, and L. Nordström, Phys. Rev. B64 (2001) 195134. [ Links ]
26. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Austria, 2001). [ Links ]
27 . P. Bhattacharya, Semiconductor Optoelectronic Devices 2nd ed. (Prentice-Hall, Upper Saddle River, NJ, 1997), p. 22. [ Links ]
28. M. A. Beno et al., Appl. Phys. Lett. 51 (1987) 57. [ Links ]
29. J. E. Ayers, Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization (CRC, Boca Raton, 2007), p. 208. [ Links ]