SciELO - Scientific Electronic Library Online

 
vol.59 número5DFT study of the pressure influence on the electronic and magnetic properties of Ga𝒳Mn1-𝒳N compoundExperimental considerations on the determination of radiation fields in an electron accelerator índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.59 no.5 México sep./oct. 2013

 

Investigación

 

Metallic behaviour at YBaCuO7/Zas interfaces (G=Ga, Al)

 

R. Torres and R. Baquero

 

Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México D. F. 07000, México. e-mail: rbaquero@fis.cinvestav.mx.

 

Received 25 September 2012
Accepted 21 March 2013

 

Abstract

We present the electronic band structure of the interfaces YBa2Cu3O7/GaAs (direct gap) and YBa2Cu3O7/A1As (indirect gap) in different configurations calculated using the Density Functional Theory as in the Wien2k code within the local density approximation. We have projected the density of states at the atomic layers forming the interface. We concentrated on the semiconductor side. The four first atomic layers in the semiconductor side of the interface present a clear metallic behaviour. We found for both semiconductors considered that it converges towards the bulk atomic-layer projected density of states a few atomic layers from the interface. We considered an ideal non-reconstructed interface in the (001) direction first and let it relax using the corresponding option in the Wien2k code. The behaviour does not change in an important way and we found but small deviations from the ideal case in the Density of States of the relaxed interface. It is important to relax the interface since the metallic behaviour of the semiconductor side of the could have been suppressed which is the most interesting result of this work. The behaviour at the interface is interesting and could be used in several technological applications and it opens, for example, the possibility to induce superconductivity on the semiconductor side of the metal/semiconductor interface.

Keywords: YBaCuO7; semiconductors; interfaces; electronic structure.

 

PACS: 31.15.E-; 73.20.-r; 73.61.Ey; 74.72.-h

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. K. B. Bhasin, S. S. Toncich, C. M. Chorey, R. R. Bonetti, and A. E. Williams, IEEE MTT-S Dig. 1 (1992) 481.         [ Links ]

2. D. J. Frank, Cryogenics 30 (1990) 996.         [ Links ]

3. C. Castellana, F. Giazotto, M. Governale, F. Taddei, and F. Beltram, Appl. Phys. Lett. 88 (2006) 052502.         [ Links ]

4. H. Sasakura et al., Phys. Rev. Lett. 107 (2011) 157403.         [ Links ]

5. M. McColl, M. F. Millea, and A. H. Silver, Appl. Phys. Lett. 23 (1973) 263.         [ Links ]

6. U. Ghoshal, H. Kroger and T. Van Duzer, IEEE Trans. Appl. Supercond. 3 (1993)2315.         [ Links ]

7. U. Ghoshal, H. Kroger, US Patent 5388068, (1995).         [ Links ]

8. T. Van Duzer, Cryogenics 28 (1988) 527.         [ Links ]

9. Z. Y. Shen, P. Pang, C. Wilker, D. B. Laubacher, W. L. Holstein, C. F. Carter, and M. Adlerstein. IEEE Trans. Appl. Supercond. 3 (1993) 2832.         [ Links ]

10. M. K. Wu et al., Phys. Rev. Lett. 58 (1987) 908.         [ Links ]

11. B. D. Hunt, M. C. Foote and L. Bajuk, IEEE Trans. Magn. 27 (1991) 848.         [ Links ]

12. S. W. Han, S. Tripathy, P. F. Miceli, E. Badica, M. Covington, L. H.Greene, M. Aprili, Jpn. J. Appl. Phys. 42 (2003) 1395.         [ Links ]

13. C. Acha, J. Phys. D: Appl. Phys. 44 (2011) 345301.         [ Links ]

14. U. Schwingenschlögl and C. Schuster, Europhys. Lett. 77 (2007) 37007        [ Links ]

15. U. Schwingenschlögl and C. Schuster, Appl. Phys. Lett. 90 (2007) 192502        [ Links ]

16. C. Schuster and U. Schwingenschlögl, J. Appl. Phys. 102 (2007) 113720.         [ Links ]

17. K. Sakuta, M. Iyori, T. Kobayashi, M. Matsui and M. Nakajima, IEEE Trans. Magn. 27 (1991) 1361.         [ Links ]

18. Z. Wang, S. Tsukimoto, M. Saito and Y. Ikuhara, J. Appl. Phys. 106(2009)093714        [ Links ]

19. S. Nazir and U. Schwingenschlögl, Appl. Phys. Lett. 99 (2011) 073102.         [ Links ]

20. M. L. Cohen, Phys. Rev. 134 (1964) A511.         [ Links ]

21. M. L. Cohen, Rev. Mod. Phys. 36 (1964) 240.         [ Links ]

22 . S. Das Sarma, J. Fabian, X. Hu, and I. Zutic, IEEE Trans. Magn. 36 (2000) 2821        [ Links ]

23. P. Hohenberg and W. Kohn, Phys. Rev. 136 (1964) B864.         [ Links ]

24. W. Kohn and L. J. Sham, Phys. Rev. 140 (1965) A1133.         [ Links ]

25. G. K. H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, and L. Nordström, Phys. Rev. B64 (2001) 195134.         [ Links ]

26. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Austria, 2001).         [ Links ]

27 . P. Bhattacharya, Semiconductor Optoelectronic Devices 2nd ed. (Prentice-Hall, Upper Saddle River, NJ, 1997), p. 22.         [ Links ]

28. M. A. Beno et al., Appl. Phys. Lett. 51 (1987) 57.         [ Links ]

29. J. E. Ayers, Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization (CRC, Boca Raton, 2007), p. 208.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons