SciELO - Scientific Electronic Library Online

 
vol.59 número6A simple de-embedding method for on-wafer RF CMOS FET using two microstrip linesTricritical phenomena in asphaltene/aromatic hydrocarbon systems índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.59 no.6 México nov./dic. 2013

 

Investigación

 

Gas-solid phase equilibrium of biosubstances by two biological algorithms

 

J.A. Lazzús and M. Rivera

 

Departamento de Física, Universidad de La Serena, Casilla 554, La Serena, Chile. e-mail: jlazzus@dfuls.cl

 

Received 8 May 2013
Accepted 14 August 2013

 

Abstract

Particle swarm optimization (PSO) and genetic algorithm (GA) are applied to the gas-solid phase equilibrium of biosubstances and to estimate their sublimation pressures (Ps). Four binary systems of supercritical carbon dioxide + biosubstances are considered in this study. The Peng-Robinson equation-of-state with the Wong-Sandler mixing rules, are used as a thermodynamic model to evaluate the fugacity coefficients in the classical solubility equation, and the van Laar model was incorporated to evaluate the excess Gibbs free energy included in the mixing rules. Then, the Ps is calculated from regression analysis of solubility data (y). Ps is usually small for most solid biosubstances and in many cases available experimental techniques cannot be used to obtain accurate values. Therefore, estimation methods must be used to obtain these data. PSO and GA are used for minimize the difference between calculated and experimental solubility. Comparing PSO with GA, it is shown that the results of PSO are better than that of GA, and provide a preferable method to estimate y and Ps of any biosubstances with high accuracy.

Keywords: Sublimation pressure; biosubstances; gas-solid equilibrium; equation of state; genetic algorithm; particle swarm optimization.

 

PACS: 51.30.+i; 64.75.Cd; 02.60.Pn

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

The authors thank the Direction of Research of the University of La Serena (DIULS), and the Department of Physics of the University of La Serena (DFULS) for the special support that made possible the preparation of this paper.

 

References

1. E. Neau, S. Garnier and L.A. Avaullée, Fluid Phase Equilib. 164 (1999) 173.         [ Links ]

2. J.A. Lazzús, Thermochim. Acta 489 (2009) 53.         [ Links ]

3. J.A. Lazzús, J. Eng. Thermophys. 18 (2009) 306.         [ Links ]

4. D.Y. Peng and D.B. Robinson, Ind. Eng. Chem. Fundam. 15 (1976) 59.         [ Links ]

5. M. Zhong, B. Han, J. Ke, H. Yan and D.Y. Peng, Fluid Phase Equilib. 146 (1998) 93.         [ Links ]

6. A. Vetere, Fluid Phase Equilib. 148 (1998) 83.         [ Links ]

7. Y. Iwai, M. Yamamoto, Y. Hata, Y. Koga and Y. Arai, J. Chem. Eng. Jpn. 29 (1996) 728.         [ Links ]

8. F. Trabelsi, K. Abaroudi and F. Recasens, J. Supercrit. Fluids 14 (1999) 151.         [ Links ]

9. X. Nanping,W. Zhoohui, D. Junhang and S. Jun, Chin. J. Chem.Eng. 5 (1997) 29.         [ Links ]

10. P. Coutsikos, E. Voutsas, K. Magoulas and D.P. Tassios, Fluid Phase Equilib. 207 (2003) 263.         [ Links ]

11. B.T. Goodman, W.V. Wilding, J.L. Oscarson and R.L. Rowley, Int. J. Thermophys. 25 (2004) 337.         [ Links ]

12. J. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, USA, 1975).         [ Links ]

13. R.C. Eberhart and J. Kennedy, A new optimizer using particle swarm theory. In: Proceedings of 6th International Symposium on Micro Machine and Human Science (IEEE Publishing, Nagoya, 1995) pp. 39-43.         [ Links ]

14. J. Kennedy, R.C. Eberhart and Y. Shi, Swarm Intelligence (Academic Press, USA, 2001).         [ Links ]

15. D.S. Wong and S.I. Sandler, AIChE J. 38 (1992) 671.         [ Links ]

16. H. Orbey and S.I. Sandler, Modeling Vapor-Liquid Equilibria. Cubic Equations of State and Their Mixing Rules (Cambridge University Press, USA, 1998).         [ Links ]

17. L. Palma-Chilla, J.A. Lazzús and A.A. Pérez Ponce, J. Eng. Thermophys. 20 (2011) 487.         [ Links ]

18. L. Davis, Handbook of Genetic Algorithms (Van Nostrand Reinhold, New York, 1991).         [ Links ]

19. K.W. Kim, Y. Yun, J. Yoon, M. Gen and G. Yamazaki, Comput. Ind. 56 (2005) 143.         [ Links ]

20. T.E. Daubert, R.P. Danner, H.M. Sibul and C.C. Stebbins, Physical and Thermodynamic Properties of Pure Chemicals. Data Compilation (Taylor and Francis, London, 2000).         [ Links ]

21. G. Xu, A.M. Scurto, M. Castier, J.F. Brennecke and M. Stadther, Ind. Eng. Chem. Res. 39 (2000) 1624.         [ Links ]

22. P. Subra, S. Castellani, H. Ksibi and Y. Gabarros, Fluid Phase Equilib. 131 (1997) 269.         [ Links ]

23. W.J. Schmitt and R.C. Reid, J. Chem. Eng. Data 31 (1986) 204.         [ Links ]

24. M. Johannsen and G. Bruner, Fluid Phase Equilib. 95 (1994) 215.         [ Links ]

25. S.L.J. Yun, K.K. Liong, G.S. Gurdial and N.R. Foster, Ind. Eng. Chem. Res. 30 (1991) 2476.         [ Links ]

26. M.L. Cygnarowicz, R.J. Maxwell and W.D. Seider, Fluid Phase Equilib. 59 (1990) 57.         [ Links ]

27. H. Singh, S.L. Yun, S.J. Macnaughton, D. Tomasko and N. Foster, Ind. Eng. Chem. Res. 32 (1993) 2841.         [ Links ]

28. M. Skerget and Z. Knez, J. Agric. Food Chem. 45 (1997) 2066.         [ Links ]

29. M. Reilly, Computer Programs for Chemical Engineering Education (Sterling Swift, Texas, 1972).         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons