SciELO - Scientific Electronic Library Online

 
vol.59 número6Numerical study of the Boussinesq approach validity for natural convection and surface thermal radiation in an open cavityCommon-source cold-FET used to validate noise figure measurements and on-wafer FET noise parameters índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.59 no.6 México nov./dic. 2013

 

Investigación

 

Dirac comb with a periodic mass jump

 

J.J. Alvareza, M. Gadellab, L.M. Nietoc

 

a E.U. de Informática de Segovia, University of Valladolid, Spain. jjalvarez@infor.uva.es

b Departamento de Física Teórica, Atómica y Optica, Universidad de Valladolid, Facultad de Ciencias, Paseo Belén 9, 47011, Valladolid, Spain. e-mail: manuelgadella1@gmail.com

c Física Teórica, Atómica y Optica, Universidad de Valladolid, Facultad de Ciencias, Paseo Belén 9, 47011, Valladolid, Spain. e-mail: luismi@metodos.fam.cie.uva.es

 

Received 3 June 2013
Accepted 26 July 2013

 

Abstract

We discuss some of the properties of the spectrum of a Dirac comb with periodic mass discontinuity. Based on the relationship between the two different masses, we derive the general behavior of the spectra for both cases E > 0 and E < 0. The relationship with the constant mass model for the Dirac comb and the generalization to periodic quantum chains with n different masses are also discussed.

Keywords: Delta interactions; mass jumps; periodic potentials; energy band structures.

 

Resumen

Se discuten algunas de las propiedades del espectro del peine de Dirac con una discontinuidad periódica en la masa. Deducimos el comportamiento general del espectro para los casos E > 0 and E < 0, basándonos en la relación entre las diferentes masas. También se discute la correspondencia entre nuestros resultados y los obtenidos para el peine de Dirac con masa constante, así como la generalización a cadenas periódicas con n masas diferentes.

Descriptores: Interacciones tipo delta; saltos de masa; potenciales periódicos; estructuras de bandas de energía.

 

PACS: 03.65.-w; 03.65.Ge

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

We wish to acknowledge partial financial support by the Spanish Ministry of Science and Innovation through Project MTM2009-10751, the Junta de Castilla y León, through Project GR224.

 

References

1. S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, (Springer, Berlin, 1988).         [ Links ]

2. S. Alveberio and P. Kurasov, Singular Perturbations of Differential Operators, (Cambridge U.P., Cambridge, 1999).         [ Links ]

3. P. Kurasov, Journal of Mathematical Analysis and Applications 201 (1996) 297-323.         [ Links ]

4. P. Seba, Czechoslovak Journal of Physics 26 (1986) 667-673;         [ Links ] F.A.B. Coutinho, Y. Nogami, and J. Fernando Perez, Journal of Physics A: Mathematical and General, 30 (1997) 3937-3945;         [ Links ] P.L. Christiansen, H.C. Arnbak, A.V. Zolotaryuk, V.N. Ermakov, and Y.B. Gaididei, Journal of Physics A: Mathematical and General 36 (2003) 7589-7600;         [ Links ] F.M. Toyama, and Y. Nogami, Journal of Physics A: Mathematical and General 40 (2007) F685-F690;         [ Links ] S. Albeverio, L. Dabrowski, and P. Kurasov, Letters in Mathematical Physics 45 (1998) 33.         [ Links ] T. Fülöp, and I. Tsutsui, Physics Letters A 264 (2000) 366-374;         [ Links ] P. Hejcik and T. Cheon, Physics Letters A 356 (2006) 290-293;         [ Links ] C. Fernández, G. Palma, and H. Prado, Journal of Physics A: Mathematical and General, 38 (2005) 7509-7518;         [ Links ] A.V. Zolotaryuk, Phys. Rev. A 87 (2013) 052121;         [ Links ] Y. Golovaty, Schrödinger operators with (αδ' + βδ)-like potentials: norm resolvent convergence and solvable models, arXiv:1201.2610.         [ Links ]

5. L.J. Boya, Rivista del Nuovo Cimento 31 (2008) 75-139.         [ Links ]

6. E. Hernández, A. Jáuregui, and A. Mondragón, Journal of Physics A: Mathematical and General 33 (2000) 4507-4523;         [ Links ] I.E. Antoniou et al., Chaos, Solitons and Fractals 12 (2001) 2719.         [ Links ]

7. R.A. Morrow, and K.R. Brownstein, Physical Review B 30, (1984) 678 -680.         [ Links ] G. T. Einevoll, and P.C. Hemmer, Journal of Physics C 21 (1988) L1193-L1198;         [ Links ] J. Thomsen, G.T. Einevoll, and P.C. Hemmer, Physical Review B 39 (1989) 12783-12788;         [ Links ] G.T. Einevoll, P.C. Hemmer, and J. Thomsen, Physical Review B 42 (1990) 3485-3496;         [ Links ] J.R.F. Lima, M. Vieira, C. Furtado, F. Moraes, and C. Figueiras, J. Math. Phys. 53 (2012) 072101;         [ Links ] L.A. González-Díaz and S. Díaz-Solórzano, J. Math. Phys. 54 (2013) 042106.         [ Links ]

8. J.M. Lévy-Leblond, Physical Review A 52 (1995) 1845-1849.         [ Links ]

9. N. Moiseyev and R. Lefebvre, Physical Review A 64 (2001) 052711;         [ Links ] S. Cruz y Cruz, J. Negro, and L.M. Nieto, Physics Letters A 369, (2007) 400-406;         [ Links ] A. Ganguly, and L.M. Nieto, Journal of Physics A: Mathematical and Theoretical 40, (2007) 7265-7281;         [ Links ] A. Ganguly, S. Kuru, J. Negro, and L.M. Nieto, Physics Letters A 360 (2006) 228-233;         [ Links ] A. Ganguly, M.V. Ioffe, and L.M. Nieto, Journal of Physics A: Mathematical and General 39 (2006) 14659-14680.         [ Links ]

10. M. Gadella, F.J.H. Heras, J. Negro, and L.M. Nieto, Journal of Physics A: Mathematical and Theoretical 42 (2009) 465207.         [ Links ]

11. J.J. Álvarez, M. Gadella, F.J.H. Heras, and L.M. Nieto, Physics Letters A 373 (2009) 4022.         [ Links ]

12. M. Gadella, S. Kuru, and J. Negro, Physics Letters A 362 (2007) 265-268.         [ Links ]

13. These are continuous functions (except for a finite jump at the origin) from ℝ into ℂ such that: (i) any φ (χ)W(ℝ/{0}) admits a first continuous derivative (except at the origin), (ii) the second derivative exists almost everywhere, and (iii) both φ(x)W(ℝ/{0}) and its second derivative are a.e. square integrable, so that ∫-∞{|φ(x)|2 + |φ"(x)|2} dx < ∞.

14. Here H is any self adjoint extension of the free Hamiltonian H0 defined on the space of functions belonging to the Sobolev space W(ℝ) and such that they vanish on a neighborhood of x = α. Each matrix T defines a self adjoint extension of H0 and eventually a singular potential, which depends on τ.

15. S. Flügge, Practical Quantum Mechanics, (Springer, New York, 1974).         [ Links ]

16. J.M. Cerveró, and A. Rodríguez, European Journal of Physics B 30 (2002) 503-510;         [ Links ] J.M. Cerveró, and A. Rodríguez, European  Journal of Physics B, 32 (2003) 537-543;         [ Links ] J.M. Cerveró, and A. Rodríguez, European Journal of Physics B 43 (2005) 543-548.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons