Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.60 no.1 México feb. 2014
Investigación
One pot synthesis of PbS/Cu2S core-shell nanoparticles and their optical properties
T. Serrano and I. Gómez*
Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Laboratorio de Materiales I, San Nicolás de los Garza, Nuevo León, México, * Phone (+52) 81-83294000 ext. 6362, Fax (+52) 81-83765375, e-mail: maria.gomezd@uanl.edu.mx
Received 17 May 2013.
Accepted 3 September 2013.
Abstract
The synthesis of PbS/Cu2S core-shell nanoparticles with emission on the visible range and with improved luminescence properties was carried out by the colloidal solution-phase growth method by using simple stabilizers such as trisodium citrate and 3-mercaptopropionic acid. The core shell arrangement for particles with different crystalline structure was achieved, in addition this is the first report related to the synthesis PbS/Cu2S core-shell system. The data obtained from absorption spectra, PL spectra, and HRTEM image provided direct proof of the formation of PbS core with size around 11 nm and Cu2S shell of 5 nm thickness. According to the UV-vis absorption and PL spectrum, the optical characteristics observed in the synthesized material correspond to a PbS/Cu2S system that has a higher confinement effect than the pure PbS nanoparticles. The QY was improved in 15 % from PbS to PbS/Cu2S nanoparticles. The estimated band (HOMO-LUMO) alignment determined by CV measurements corresponds to a type-I core shell arrangement.
Keywords: Semiconductors; core-shell; PbS; Cu2S; synthesis.
PACS: 81.07.-b;42.70.-a; 61.46.Hk
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgments
I.G. acknowledges funding support from the Mexican Council for Science and Technology (CONACYT) grant CB 201001157745 and the Program for the Support of Scientific and Technological Research (PAICYT) of Universidad Autónoma de Nuevo Leon grant IT894-11.
References
1. C. B. Murray, C. R. Kagan and M. G. Bawendi, Ann Rev Mater Sci. 30 (2000) 545-610. [ Links ]
2. J. T. Hu, L. S. Li, W. D. Yang, L. W. Manna, L. Wang and A. P. Alivisatos, Science. 292 (2001) 2060-2063. [ Links ]
3. R. Heath, P. J. Kuekes, G. S. Snider and R. S. Williams, Science. 280 (1998) 1716-172. [ Links ]
4. W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, Science. 295 (2002) 2425-2427. [ Links ]
5. H. H. Kung and M. C. Kung, Catalysis Today. 97 (2009) 219-224. [ Links ]
6. S. Li, H. Z. Wang, W. W. Xu, H. L. Si, X. J. Tao, S. Lou, Z. Du and S. L. Li, Journal of Colloid and Interface Science. 330 (2009) 483-487. [ Links ]
7. J.C. Querejeta-Fernandez, et al., ACSNano. 6 (2012) 3800-3812. [ Links ]
8. J.D. Patel, F. Mighri, and A. Ajji, Materials Letters, 74 (2012) 183-186 [ Links ]
9. C. Ratanatawanate, C. Xiong, and K.J. Balkus, ACSNano 2 (2008) 1682-1688. [ Links ]
10. D. Kumar G. Agarwal, B. Tripathi, D. Vyas, and D. Kulshrestha, Journal of Alloys and Compounds 484 (2009) 463-466. [ Links ]
11. M. Rajamathi, R. Seshadri, Current Opinion in Solid State and Materials Science, 6 (2002) 337-345. [ Links ]
12. M. Neo, N. Venkatram, G.S. Li, W.S. Chin, and W. Ji, J. Phys. Chem. C114 (2010) 18037-18044. [ Links ]
13. H.W. Hillhouse, and M.C. Beard, Current Opinion in Colloid & Interface Science. 14 (2009) 245-259. [ Links ]
14. V.P. Singh, R.S. Singh, and K.E. Sampson, Nanostructured Materials for Solar Energy Conversion (T. Soga. Elsevier B.V. 2006). [ Links ]
15. A.J. Nozik Phys E Low-Dimens Syst Nanostruct 14 (2002) 115-20. [ Links ]
16. K. Okamoto and S. Kawai, Jpn J Appl Phys. 8 (1973) 1130-1138. [ Links ]
17. C. Nascu, I. Pop, V. Ionescu, E. Indrea and I. Bratu, Mater Lett. 32 (1997) 73-77. [ Links ]
18. H. S. Randhawa, R. F. Bunshan, D. G. Brock and B. M. Basol, Solar Energy Mater. 6 (1982) 445-453. [ Links ]
19. J. J. Loferski, J. Shewchun, S. D. Mittleman, E. A. Demeo, R. Arnott, H. L. Hwang and R. Beaulieu, Solar Energy Mater. 1 (1979) 157-169. [ Links ]
20. E. Saunders, A. Ghezelbash, D. M. Smilgies, M. B. Sigman and B. A. Korgel, Nano Lett. 6 (2006) 2959-2963. [ Links ]
21. Y. Wu, C.Wadia, W. Ma, B. Sadtler and A. P. Alivisatos, Nano Lett. 8 (2008) 2551-2555. [ Links ]
22. T. T. Zhuang, F. J. Fan, M. Gong and S. H. Yu, Chem. Commun 48 (2012) 9762-9764. [ Links ]
23. P. Reiss, M. Protiere and L. Li, Core/Shell Semiconductor Nanocrystals2 (2009) 154-168. [ Links ]
24. T. Serrano, I. Gomez, R. Colas, and J. Cavazos, Colloids and Surfaces A: Physicochem. Eng. Aspects,338 (2009) 20-24 [ Links ]
25. M. L. Curri, A. Agostiano, M. Catalano, L. Chiavarone, V. Spagnolo and M. Lugara, J. Phys. Chem. 104 (2000) 8391-8397. [ Links ]
26. Kumar and A. Jakhmola, Langmuir 23 (2007) 2915-2918. [ Links ]
27. S. Wang and S. Yang, Langmuir 16 (2000) 389-397. [ Links ]
28. A. Kumar and A. Jakhmola, Journal of Colloid and Interface Science 297 (2006) 607-617. [ Links ]
29. M.V. Kovalenko, R.D. Schaller, D. Jarzab, M.A. Loi, and D.V.d Talapin, J. Am. Chem. Soc. 134 (2012) 2457-2460. [ Links ]
30. S. Trasatti, in Electrified Interfaces in Physics, Chemistry and Biology, edited by R. Guidelli Kluwer Academic, Dordrecht, (1992) pp. 229-244. [ Links ]
31. S. N. Inamdar, P. P. Ingole, and S. K. Haram, Chem.Phys.Chem (2008) 9 2574-2579. [ Links ]
32. S. Haram, A. Kshirsagar, Y. Gujarathi, P. Ingole, O. Nene, J. Markad, and S. Nanavati, J. Phys. Chem. C 115 (2011) 6243-6249. [ Links ]
33. Y. Bae, N. Myung, and A. Bard, J. Nano Lett. 4 (2004) 1153-1161. [ Links ]
34. X. Zhao and X. Zhan, Chem. Soc. Rev. 40 (2011) 3728-3743. [ Links ]
35. A. Balan, D. Baran and L. Toppare, Polym. Chem., 2 (2011) 1029-1043. [ Links ]
36. A. Cordones, M. Scheele, P. Alivisatos, and S. Leone, J. Am. Chem. Soc. 134 (2012) 18366-18373. [ Links ]
37. E. Kucur, Riegler, G. Urban, and T. Nann, J. Chem. Phys. 119 (2003) 2333 [ Links ]