SciELO - Scientific Electronic Library Online

 
vol.60 número1Estimación de parámetros concentrados de un proceso estocástico de segundo ordenGraphite thin film characterization using a simplified resonant near field scanning microwave microscope índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.60 no.1 México feb. 2014

 

Investigación

 

Black holes from Myers-Perry solution

 

L. A. López

 

Área Académica de Matemáticas y Física, UAEH, carretera Pachuca-Tulancingo km 4.5, Pachuca, 42184, Hidalgo, México.

 

Received 5 August 2013.
Accepted 15 November 2013.

 

Abstract

From the five dimensional Myers-Perry solution and consider that de metric MP corresponding to the Kaluza-Klein ansatz (zero mode), we obtained 4D solution with non-minimally coupled scalar and electromagnetic fields, characterized by three parameters, r0 , a, b, related to the mass, angular momentum and electromagnetic field, respectively and proposing that the 4D solution is a solution type black hole. Then for a ≠ 0, b = 0 the electromagnetic field vanishes and the black hole is stationary. For a = 0, b ≠ 0 the solution is static with electric field. If a ≠ 0, b0 the solution is stationary with electric field and, due to the rotation, a magnetic field appears. The scalar field that arises from the dimensional reduction is present in all cases. At infinity the solution is asymptotically flat and the trace of the scalar field get lost, turning out that this solution is in agreement with the no hair conjecture.

Keywords: Exact solutions; higher dimensions; black holes.

 

PACS: 04.70.Bw; 04.50.Gh; 04.50.Cd; 04.20.Jb

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. J. M. Overduin and P. S. Wesson, 5D Kaluza-Klein Gravity, Phys. Rep. 203 (1997) 303.         [ Links ]

2. G. W. Gibbons and D. L. Wiltshire, Black Holes in Kaluza-Klein Theory, Ann. Phys. 167 (1986) 201.         [ Links ]

3. F. Laser, Rotating Kaluza-Klein Black Holes, Nucl. Phys. B575 (2000) 211.         [ Links ]

4. T. Shiromizu, S. Tomizawa, Y. Uchida and S. Mukohyama, Kaluza-Klein bubble like structure and celestial sphere in the inflationary universe, Gen. Relativ. Gravit. 37 (2005) 1823.         [ Links ]

5. S. Sen and N. Banerjee, On the absence of scalar hair for charged rotating black holes in non-minimally coupled theories, Phys. Rev. D 58 (1998) 104024.         [ Links ]

6. V. P. Frolov, A. I. Zelnikov and U. Bleyer, Charged rotating Black Holes from Dimensional Point of View, Ann. der Physik. 7 (1987) 371.         [ Links ]

7. R. C. Myers and M. J. Perry, Black Holes in Higher Dimensional Space-Time, Ann. Phys. 172 (1986) 304.         [ Links ]

8. E. Halilsoy, M. Halilsoy and O. Unver, Colliding wave solutions from five-dimensional black holes and black p-branes, J. Math. Phys. 47 (2006) 012502.         [ Links ]

9. A. Feinstein, Some aspects of pre Big Bang cosmology, Rev. Mex. Fis. 49S1 (2003) 30-37; arXiv: 0106001.         [ Links ]

10. V. Frolov and D. Stojkovic, Particle and light motion in a space-time of a five-dimensional rotating black holes, Phys. Rev. D 68 (2003) 064011.         [ Links ]

11. F. R. Tangherlini, Schwarzschild field in N dimensions and the dimensionality of space problem, uovo Cim., 27 (1963) 636.         [ Links ]

12. J. D. Jackson, Classical Electrodynamics, (Third Ed. John Wiley and Sons, Inc. 1998).         [ Links ]

13. J. M. M. Senovilla, Trapped surfaces horizons and exact solution in higher dimensions, Class. Quantum Grav. 19 (2002) L113.         [ Links ]

14. T. Harmark, Stationary and axisymmetric solutions of higher-dimensional general relativity, Phys. Rev. D 70 (2004) 124002.         [ Links ]

15 . G.W. Gibbons and K. Maeda, Black holes and membranes in higher-dimensional theories with dilaton fields. Nucl. Phys. B 298 (1988) 741.         [ Links ]

16 . A. E. Mayo and J. D. Bekenstein, No hair for spherical black holes: Charged and nonminimally coupled scalar field with self-interaction, Phys. Rev. D 54 (1996) 5059.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons