Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.60 no.2 México mar./abr. 2014
Investigación
Polydispersity and structure: a qualitative comparison between simulations and granular systems data
R. Sánchez, I. C. Romero-Sánchez, S. Santos-Toledano and A. Huerta
Departamento de Física, Facultad de Física e Inteligencia Artificial, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán s/n, Zona Universitaria, Xalapa 91000, Veracruz, Mexico.
Received 22 August 2013.
Accepted 7 January 2014.
Abstract
Various quasi-2D systems are examined experimentally, particularly via the radial distribution function, in an inexpensive and convenient driven granular system. Results regarding the effects of polydispersity and granular collapse are presented. It is found that, even using a simple size distribution, Monte Carlo equilibrium simulations can successfully reproduce the experimental results with only minor corrections arising from observed granular collapse, and that polydispersity of ~ 7 % suppresses crystallization.
Keywords: Quasi-2D; granular collapse; jamming; driven granular media.
PACS: 68.18.-g; 68.47.Pe; 81.05.Rm; 64.70.P-
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgements
The authors acknowledge support from Red Temática de la Materia Condensada Blanda (CONACYT) and valuable discussions with A. Trokhymchuk. AH acknowledges funding from CONACYT (project number 152431), and RS acknowledges separate support from CONACYT (Retención 174462).
References
1. P. M. Reis, R. A. Ingale, and M. D. Shattuck, Phys. Rev. Lett. 98 (2007) 188301. [ Links ]
2. F. Pacheco-Vázquez, G. A. Caballero-Robledo, and J. C. Ruiz-Suárez, Phys. Rev. Lett. 102 (2009) 170601. [ Links ]
3. A. Huerta, D. Henderson, and A. Trokhymchuk, Phys. Rev. E 74 (2006) 061106. [ Links ]
4. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press Inc., New York, USA, 1989), pp. 54-57. [ Links ]
5. J. Santana-Solano and J. L. Arauz-Lara, Phys. Rev Lett. 87 (2001) 038302. [ Links ]
6. J. Santana-Solano and J. L. Arauz-Lara, Phys. Rev. E65 (2002) 021406. [ Links ]
7. W. Wang, Z. amd Qi, Y. Peng, A. M. Alsayed, Y. Chen, P. Tong, and Y. Han, J. Chem. Phys. 134 (2011) 034506. [ Links ]
8. Z. Wang, A. M. Alsayed, A. G. Yodh, and Y. Han, J. Chem. Phys. 132 (2010) 154501. [ Links ]
9. J. Tobochnik, Phys. Rev. E 60 (1999) 7137. [ Links ]
10. P. N. Pusey and W. van Megen, J. Chem. Phys. 80 (1984) 3513. [ Links ]
11. C. Walther, S. Büchner, M. Filella, and V. Chanudet, J. Colloid Interface Sci. 301 (2006) 532. [ Links ]
12. M. Fasolo and P. Sollich, J. Phys.: Condens. Matter 17 (2005) 797. [ Links ]
13. H. Acuña-Campa, M. D. Carbajal-Tinoco, J. L. Arauz-Lara, and M. Medina-Noyola, Phys. Rev. Lett. 80 (1998) 5802. [ Links ]
14. G. Gradenigo, A. Sarracino, D. Villamaina, and A. Puglisi, Europhys. Lett. 96 (2011) 14004. [ Links ]
15. I. F. Sbalzarini and P. Koumoutsakos, J. Struct. Biol. 151 (2005) 182. [ Links ]
16. C. H. Mak, Phys. Rev. E 73 (2006) 065104. [ Links ]
17. A. Huerta, V. Carrasco-Fadanelli, and A. Trokhymchuk, Condens. Matter Phys. 15 (2012) 43604. [ Links ]
18. S. Miller and S. Luding, Phys. Rev. E 69 (2004) 031305. [ Links ]
19. L. Santen and W. Krauth, arXiv:condmat/ (2001) 0107459. [ Links ]
20. T. Kawasaki, T. Araki, and H. Tanaka, Phys. Rev. Lett. 99 (2007)215701. [ Links ]
21. Z. Zhang et al., Nature 459 (2009) 230. [ Links ]
22. K. Watanabe and H. Tanaka, Phys. Rev Lett. 100 (2008) 158002. [ Links ]