SciELO - Scientific Electronic Library Online

 
vol.60 número3An approximation of tribological behavior of Ti1-xAl xN coatings against animal bone in ringer's solutionStructural changes in ZrOxNy/ZrO2 coatings deposited through spray pyrolisis-nitriding índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.60 no.3 México may./jun. 2014

 

Research

 

Growth of metal micro and/or nanoparticles utilizing arc-discharge immersed in liquid

 

B. Rebollo-Plataa, M. P. Sampedrob*, G. Gallardo-Gómeza, N. Ortega-Mirandaa, C. F. Bravo-Barrerac, G. Daniel-Péreza, B. Zenteno-Mateod, D. Hernández-Cruze and S. Jiménez-Sandovalf

 

a Instituto Tecnológico Superior de Irapuato, km 12.5 Carr. Irapuato-Silao, Irapuato Guanajuato, 36821, México.

b Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur Edif. 106 D, Ciudad Universitaria, Puebla, 72590, Puebla, México, * e-mail: mpstraviata@hotmail.com

c Comisión Federal de Electricidad - Laboratorio de Pruebas de Equipos y Materiales, Irapuato, Guanajuato, México.

d Facultad de Ingeniería, Benemérita Universidad Autónoma de Puebla, Boulevard Valsequillo y Circuito CU, Ciudad Universitaria, Puebla, Puebla, 72590, México.

e Facultad de Ingeniería, Universidad Autónoma de Chiapas, Chiapas, México.

f Centro de Investigación y de Estudios Avanzados del IPN, Laboratorio de Investigación en Materiales, Querétaro, México.

 

Received 22 Octobre 2013
accepted 18 March 2014

 

Abstract

In this paper, we present results on the metal microcrystals and nanoparticles of Al, Cu and Al-Cu composite growth by arc-discharge with the system immersed in distilled water, under different conditions and varying the current from 50 to 150 A with constant voltage (27 V). These structures are characterized using X-ray diffraction, scanning electron microscopy, Raman spectroscopy and Uv-Vis spectroscopy. Our results demonstrate that metal micro and nanostructures can be prepared at low cost with high quality.

Keywords: Metal microcrystals and/or nanoparticles; distilled water; arc-discharge immersed in liquid.

 

PACS: 81.05.Mh; 81.05.Ni; 81.05.Pj; 81.05.Qk; 78.30.Er; 81.16.Pr; 68.37.Hk

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. D.L. Feldheim, and C.A. Foss Jr., Metal Nanoparticles; Synthesis, Characterization, and Applications, (Marcel Dekker, New York, 2002).         [ Links ]

2. O. Ozuna, G.A. Hirata, and J. McKittrick, J. Phys.: Condens. Matter. 16 (2004) 2585-2591.         [ Links ]

3. A. Chen, H. Long, X. Li, Y. Li, G. Yang, and P. Lu, Vaccum XXX 1-4 (2008).         [ Links ]

4. M. Kevin, W.L. Ong, G.H. Lee, and G.W. Ho, Nanotechnology 22 (2011) 235701.         [ Links ]

5. W. Lv, Z. Luo, H. Yang, B. Liu, W. Weng, and J. Liu, Ultrasonics Sonochemistry 17 (2010) 344-351.         [ Links ]

6. Y.S. Zhang, K. Wang, Z. Han, K. Lu, J. Mater. Res. 23 (2008) 150.         [ Links ]

7. J.A. Baier-Saip, J.I. Avila, G. Tarrach, A.L. Cabrera, V. Fuenzalida, R.A. Zarate, I.K. Schuller, Surf. Coat. Tech. 195 (2005) 168-175.         [ Links ]

8. T. Laha, K. Balani, A. Agarwal, S. Patil, and S. Seal, Metallurgical and Materials Transactions A 36 (2005) 301.         [ Links ]

9. H.Y. Zhu, X.P. Gao, D.Y. Song, and S.P. Ringer Y.X. Xi.         [ Links ]

10. K. Kim., Metals and Materials International 14 (2008) 707-711.         [ Links ]

11. T.K. Sindhu, R. Sarathi, and S.R. Chakravarthy, Bull., Mater. Sci. 30 (2007) 187-195.         [ Links ]

12. A.G. Nasibulin, P.P. Ahonen, O. Richard, E.I. Kauppinen, and I.S. Altman, Nanoparticle Research 3 (2001) 385-400.         [ Links ]

13. J. Ryu, H.S.G. Kim, and H.T. Hahn., J. Electronic Materials 40 (2011) 42.         [ Links ]

14. S.Y. Xie, Z.J. Ma, C.F. Wang, S.C. Lin, Z.Y. Jiang, R.B. Huang, and L.S. Zheng, J. Solid State Chemistry 177 (2004) 37433747.         [ Links ]

15. W. Lv, Z. Luo, H. Yang, B. Liu, W. Weng, and J. Liu, Ultrasonics Sonochemistry 17 (2010) 344-351.         [ Links ]

16. H. Gong, Y. Wang, and Y. Luo, Appl. Phys. Lett. 76 (2001) 3959.         [ Links ]

17. S. Gao, Y. Zhao, P. Gou, N. Che, and Y. Xie, Nanotechnology 14 (2003) 538.         [ Links ]

18. A.N. Banerjee, and K.K. Chattopadhyay, J. Appl. Phys. 97 (2005) 084308.         [ Links ]

19. J.M. Daughton, Thin Solid Films 216 (1992) 162.         [ Links ]

20. D.E. Heim, R.E. Fontana Jr., C. Tsang, V.S. Speriosu, B.A. Gurney, and M.L. Willams, IEEE Trans. Magn. 30 (1994) 162.         [ Links ]

21. B.J. Jonsson-Akerman, R. escudero, C. Leighton, S. Lim, I.K. Schuller, and D.A. Rabson, Appl. Phys. Lett. 77 (2000) 1870.         [ Links ]

22. B.F.P. P.A. Beck, S.O. Democritov, and B. Hillebrands, Surf. Sci. 497 (2002) L55.         [ Links ]

23. J.J. Akerman, I.K. Schuller, J.M. Slaughter, and R.W. Dave, Appl. Phys. Lett. 79 (2001) 1.         [ Links ]

24. Z. Chen et al., Toxicology Letters 163 (2006) 109-120.         [ Links ]

25. G. Liu, X. Li, B. Qin, D. Xing, Y. Guo, and R. Fan, Tribology Lett. 17 (2004) 961-966.         [ Links ]

26. Q. Xu, Y. Zhao, J.Z. Xu, and J.J. Zhu, Sensors and Actuators B 114 (2006) 379-386.         [ Links ]

27. A. Banerjee, and S.W. Joo, Nanotechnology 22 (2011) 1-8.         [ Links ]

28. S. Cava, S.M. Tebcherani, I.A. Souza, S.A. Pianaro, C.A. Paskocimas, E. Longo, and J.A. Varela, Materials Chemistry and Physics 103 (2007) 394-399.         [ Links ]

29. Q. Fu, C.B. Cao, and H.S. Zhu, Thin Solid Films 348 (1999) 99-102.         [ Links ]

30. O. Ozuna, G.A. Hirata, and J. McKittrick, J. Phys.: Condens. Matter. 16 (2004) 2585-2591.         [ Links ]

31. T. Laha, K. Balani, A. Agarwal, S. Patil, and S. Seal, 36A (2005) 301.         [ Links ]

32. M.Yin, C.K. Wu, Y. Lou, C. Burda, J.T. Koberstein, Y. Zhu, and S. O'Brien. J. Am, Chem. Soc. 127 (2005) 9506-9511.         [ Links ]

33. A. Chen, H. Long, X. Li, Y. Li, G. Yang, and P. Lu, Vacuum, XXX (2008) 1-4.         [ Links ]

34. M. Kevin, W.L. Ong, G.H. Lee, and G.W. Ho, Nanotechnology, 22 (2011) 235701.         [ Links ]

35. A.G. Nasibulin, P.P. Ahonen, O. Richard, E.I. Kauppinen, and I.S. Altman, Journal of Nanoparticle Research 3 (2001) 385-400.         [ Links ]

36. S.Y. Xie, Z.J. Ma, C.F. Wang, S.C. Lin, Z.Y. Jiang, R.B. Huang, and L.S. Zheng, Journal of Solid State Chemistry 177 (2004) 3743-3747.         [ Links ]

37. T. Laha, K. Balani, A. Agarwal, S. Patil, and S. Seal, Metallurgical and Materials Transactions A 36A (2005) 301.         [ Links ]

38. S. Cava et al., Materials Chemistry and Physics 103 (2007) 394-399.         [ Links ]

39. P.A. Temple and C.E. Hathaway, Phys. Rev. B 7 (1973) 3685-3697.         [ Links ]

40. X. Gao and I.E. Wachs, Journal of Catalysis 192 (2000) 18-28.         [ Links ]

41 . T. Wei, Master Degree Thesis, (Simon Fraser University, 1990).         [ Links ]

42. J. Trajic et al., Acta Physica Polonica A 117 (2010) 791.         [ Links ]

43. M.A. Khan, T.P. Hogan, and B. Shanker, J. Nano Systems & Technology 1 (2009) 1.         [ Links ]

44. J. Pellicer-Porres, A. Segura, A.S. Gilliland, A. Muñoz, P. Rodriguez-Hernandez, D. Kim, M.S. Lee and T.Y. Kim, Appl. Phys. Lett. 88 (2006) 181904.         [ Links ]

45. K. Li, J.F. Huang, L.Y. Cao, B. Wang, and Z.Y. Shi, Journal of Inorganic Materials 26 (2011).         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons