Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.60 no.3 México may./jun. 2014
Research
Structural changes in ZrOxNy/ZrO2 coatings deposited through spray pyrolisis-nitriding
G. I. Cubillosa, J. J. Olayab, M. Bethencourtc, G. Cifredod and G. Blancod
a Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Cra 30 No 45-03. Bogotá-Colombia, e-mail: gcubillos@unal.edu.co
b Departamento de Ingeniería Mecánica y Mecatronica, Facultad de Ingeniería, Universidad Nacional de Colombia, Bogotá-Colombia, e-mail: jjolayaf@unal.edu.co
c Materials Science and Metallurgical Engineering Department, and Inorganic Chemistry Department, University of Cadiz, Marine Science and Technology Center of Andalucía, International Campus of Excellence of the Sea (CEIMAR), Avda. Republica de Saharaui, Puerto real, E-11510. Spain. e-mail: manuel.bethencourt@uca.es
d Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, 11510-Puerto Real, Cádiz, Spain. e-mail: gustavo.cifredo@uca.es; ginesa.blanco@uca.es
Received 27 November 2013
accepted 28 March 2014
Abstract
Thin films of zirconium oxynitride were deposited on stainless steel 316L and characterized through ultrasonic spray pyrolysis-nitriding (UPS-N). Initially, thin films of ZrO2 are deposited using ultrasonic spray pyrolysis, and later ZrO2 films were nitrided in a NH3 atmosphere. We analyzed the effect of some variables, such as substrate temperature, flow ratio, and time of the production of coatings and their influence on the structure of the films. The characterization was carried out using X-ray diffraction (XRD) spectroscopy, X-ray photoelectron (XPS), and scanning electron microscopy (SEM).
Films that were grown using the UPS method exhibited a tetragonal zirconia polycrystalline structure with preferential orientation in plane (101). These films, after being nitrided in an atmosphere of anhydrous ammonia at 1023 K, go through two processes: a phase transition from tetragonal to monoclinic, and later the formation of zirconium oxynitride rhombohedral ZrOxNy.
Keywords: Zirconium oxinitride; spray pyrolysis; coatings.
PACS: 61.66.Fn; 61.05.cp; 68.37.Ps; 67.80 dm
DESCARGAR ARTÍCULO EN FORMATO PDF
References
1. M. W. Finnis, Journal of Physics Condensed Matter. 8 (1996) 5811. [ Links ]
2. J. Hong, T. Chun, and G. Ping, Surface & Coatings Technology. 206 (2011) 107. [ Links ]
3. S.C. Ferreira, E. Ariza, L.A. Rocha, J.R. Gomes, and P. Carvalho, Surface & Coatings Technology. 200 2006 6634. [ Links ]
4. P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. Tavares, and C. Moura, Journal of Applied Physics. 98 (2005) 023715-1. [ Links ]
5. S. Gutzov, and M. Lerch, Optical Materials 24 (2003) 547. [ Links ]
6. N. Fripiat, R. Conaneq, R. Marchand, Y. Laurent and P. Grangea, Journal of the European Ceramic Society. 17 1997 2011 [ Links ]
7. R. Caruso, B. Gómez, O. De Sanctis, and J. Feugeas, A. Díaz-Parralejo, F. Sánchez, Thin Solid Films. 468 (2004) 142. [ Links ]
8. S. Chang and R. Doong, J. Phys. Chem. B. 108 (2004) 18098. [ Links ]
9. Y. Song, S. Tsai, C. Chen, T. Tseng, C. Tsai, J. Chen, and Y. Yao, J. Am. Ceram. Soc. 87-10 (2004) 1864. [ Links ]
10. M. García et al., Solid State Ionics. 179 (2008) 243. [ Links ]
11. X. Youguo, H. Zhaohui, L. Yangai, F. Minghao, Y. Li, and G. Ming, Solid State Sciences. 14 (2012) 730. [ Links ]
12. M. Tisza, Physical metallurgy for engineers. (ASM International and Freund publishing house Ltd., USA., 2002) p. 65-70, [ Links ].
13. M. Lerch, F. Krumeichb, and R. Hock, Solid State Ionics. 95 1997 87. [ Links ]
14. J. Chevalier, and L. Gremillard, J. Am. Ceram. Soc. 92-9 (2009) 1901. [ Links ]
15. A. S. Foster, V. B. Sulimov, F. Lopez, A. L. Shluger, and R. Nieminen M., Physical review. 64 (2001) 224108-1. [ Links ]
16. J.S. Lamas, W.P. Leroy, and D. Depla, Thin Solid Films. 525 (2012) 6. [ Links ]
17. J. Hong, Z. En Tsai, and G. Ping, Surface & Coatings Technology. 202 (2008) 4992. [ Links ]
18. R. Marchand, Y. Laurent, J. Guyader, P. Haridon, and P. Verdier, Journal of the European Ceramic Society. 8 (1991) 197. [ Links ]
19. R. Franchy, Surface Science Reports. 38 (2000) 195. [ Links ]
20. L. Bois, P. Haridon, H. Wiame, and P. Grange, Materials Research Bulletin. 33 (1998) 9. [ Links ]
21. M. Lerch, et al, Progress in Solid State Chemistry. 37 (2009) 81. [ Links ]
22. M. Lerch, Journal of American Ceramic Society. 79 (1996) 2641. [ Links ]
23. Y. Ohashi, T. Motohashi, Y. Masubuchi, T. Moriga, and K. Murai, S. Kikkawa, Journal of Solid State Chemistry. 184 (2011) 2061. [ Links ]
24. I. Cubillos, J. Olaya, M. Bethencourt, G. Cifredo, and J.F. Marco, Rev. LatinAm. Metal. Mat. 116 (2013) 33-1. [ Links ]
25. J. Rodríguez, Physica B: Physics of Condensed Matte. 1993, 192,55. [ Links ]
26. Y. Qiu, L. Gao, Journal of the European Ceramic Society 2003, 23, 2015. [ Links ]
27. G. Istrati, Manual de los aceros inoxidables, (Editorial Alsina, Buenos Aires Argentina, 1961). [ Links ]
28. M. Lerch, F. Krumeichb, and R. Hock, Solid State Ionics. 95 (1997) 87. [ Links ]
29. Y. Qiu, and L. Gao, Journal of the European Ceramic Society. 23 (2003) 2015. [ Links ]
30. F. Bayoumi and W. Ghanem, Materials Letters. 59 (2005) 3311. [ Links ]
31. E.A. Kemmerle and G. Heger, Journal of Solid State Chemistry. 147 (1999) 485. [ Links ]
32. T. Delachauxa, Ch. Hollensteina, F. Lévyb, and C. Verdonc, Thin Solid Films. 425 (2003) 113. [ Links ]
33. A.D. Mazzoni, and E.F. Aglietti, Materials Chemistry and Physics. 65 (2000) 166. [ Links ]
34. A. Roustila, J. Chene, and C. Séverac, Journal of Alloys and Compounds 330 (2003) 356-357. [ Links ]
35. I. Espitia-Cabrera, H.D. Orozco-Hernández, P. Bartolo-Pérez, and M.E. Contreras-García, Surface & Coatings Technology. 203 (2008) 211. [ Links ]
36. A. Roustilaa, J. Cheneb, and C. Severacb, International Journal of Hydrogen Energy. 32 (2007) 5026. [ Links ]
37. F. Samanipoura, M.R. Bayatia, F. Golestani-Farda H.R. Zargard, T. Troczynskid, and A.R. Mirhabibia, Colloids and Surfaces B: Biointerfaces. 86 (2011) 14. [ Links ]
38. I. Milosev, H. Strehbtow, M. Gaberscek, and B. Navinsek, Thin Solid Films. 303 (1997) 246-254. [ Links ]
39. H. Wiame, M.A. Centeno, S. Picard, P. Bastians, and P. Grange, Journal of the European Ceramic Society. 18 (1998) 1293. [ Links ]
40. A. Rizzo, M.A. Signore, L. Mirenghi, and T. Di Luccio, Thin Solid Films. 517 (2009) 5956. [ Links ]
41. D. Roman et al., Materials Chemistry and Physics. 2011, 130, 147. [ Links ]
42. H. Soerijanto, C. Rodel, U. Wildb, M. Lerch, R. Schomacker, R. Schlogl, and T. Ressler, Journal of Catalysis. 250 (2007) 19. [ Links ]
43. M. Chan, P. Wu, and F. Lu, Thin Solid Films. 518 (2010) 7300. [ Links ]
44. M.A. Signore, A. Rizzo, L. Mirenghi, M.A. Tagliente, and A. Cappello, Thin Solid Films. 515 (2007) 6798. [ Links ]
45. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, (Version 3.5. copyright by the U.S. Secretary of Commerce on behalf of the United States of America, 2003). [ Links ]
46. A. P.Grosvenor, B. A. Kobe, M. C. Biesinger, and N. S. McIntyre, Surf. Interface Anal. 36 (2004) 1564. [ Links ]