SciELO - Scientific Electronic Library Online

 
vol.60 número5Enhancement of vectorial nonlinearity in rubidium vapor by using an additional pump beamProbabilidad de transmisión en cadenas desordenadas de ADN índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.60 no.5 México sep./oct. 2014

 

Investigación

 

Higher dimensional Elko theory

 

J. A. Nieto

 

Facultad de Ciencias Físico-Matemáticas de la Universidad Autónoma de Sinaloa, 80010, Culiacán Sinaloa, México. e-mail: nieto@uas.edu.mx, janieto1@asu.edu

 

Received 21 March 2014;
Accepted 18 August 2014

 

Abstract

We show that the so-called Elko equation can be derived from a 5-dimensional Dirac equation. We argue that this result can be relevant for dark matter and cosmological scenarios. We generalize our procedure to higher dimensions.

Keywords: Elko equation; Dirac equation; dark matter.

 

PACS: 04.20.Gz, 04.60.-Ds, 11.30.Ly

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

I would like to thank professor D. V Ahluwalia, as well as the two referees, for helpful comments. This work was partially supported by PR0FAPI-UAS/2013.

 

References

1. Particle Dark Matter: Observations, Models and Searches (Cambridge, UK: Cambridge University Press, 2010) edited by Gianfranco Bertone.         [ Links ]

2. D. V. Ahluwalia and D. Grumiller, JCAP 0507 (2005) 012; e-Print: hep-th/0412080.         [ Links ]

3. D. V. Ahluwalia and D. Grumiller, Phys. Rev. D 72 (2005) 067701; e-Print: hep-th/0410192.         [ Links ]

4. D. V. Ahluwalia, S. P. Horvath, JHEP 1011 (2010) 078; e-Print: arXiv:1008.0436 [hep-ph]         [ Links ].

5. D. V. Ahluwalia, C. Y. Lee and D. Schritt, Phys. Rev. D 83 (2011) 065017; arXiv:0911.2947 [hep-ph]         [ Links ].

6. D. V. Ahluwalia, C. Y. Lee, D. Schritt and T. F. Watson, Phys. Lett. B 687 (2010) 248; arXiv:0804.1854 [hep-th]         [ Links ].

7. R. da Rocha and J. M. Hoff da Silva, J. Math. Phys. 48 (2007) 123517; arXiv: 0711.1103 [math-ph]         [ Links ].

8. R. da Rocha and J. M. Hoff da Silva, Adv. Appl. Clifford Algebras 20 (2010) 847-870; arXiv:0811.2717 [math-ph]         [ Links ].

9. R. da Rocha and J. M. Hoff da Silva, Int. J. Geom. Meth. Mod. Phys. 6 (2009) 461-477; arXiv:0901.0883 [math-ph]         [ Links ].

10. R. da Rocha and J. M. Hoff da Silva, Int. J. Mod. Phys. A 24 (2009) 3227-3242; arXiv:0903.2815 [math-ph]         [ Links ].

11. K. E. Wunderle and R. Dick, Can. J. Phys. 87 (2009) 909.         [ Links ]

12. D. V. Ahluwalia, On a local mass dimension one Fermi field of spin one-half and the theoretical crevice that allows it; arXiv:1305.7509 [hep-th]         [ Links ].

13. A. Basak, J. R. Bhatt, S. Shankaranarayanan, K.V. P. Varma, JCAP 1304 (2013) 025; arXiv:1212.3445 [astro-ph.CO]         [ Links ]

14. C. G. Boehmer, Annalen Phys. 16 (2007) 325; gr-qc/0701087.         [ Links ]

15. L. Fabbri, Phys. Lett. B 704 (2011) 255; arXiv:1011.1637 [gr-qc]         [ Links ].

16. S. Kouwn, J. Lee, T. H. Lee and P. Oh, Mod. Phys. Lett. A 28 (2013) 1350121.         [ Links ]

17. J. M. Hoff da Silva and S. H. Pereira, JCAP 1403 (2014) 009; arXiv:1401.3252 [hep-th]         [ Links ].

18. R. da Rocha, A. E. Bernardini and J. M. Hoff da Silva, JHEP 04 (2011) 110; arXiv:1103.4759 [hep-th]         [ Links ].

19. A. E. Bernardini and R. da Rocha, Phys. Lett. B 717 (2012) 238; arXiv:1203.1049 [hep-th]         [ Links ].

20. M. Dias, F. de Campos, J. M. Hoff da Silva, Phys. Lett. B 706 (2012) 352 arXiv:1012.4642 [hep-ph]         [ Links ].

21. R. da Rocha, J. M. Hoff da Silva and A. E. Bernardini, Int. J. Mod. Phys.: Conf. Ser. 03 (2011) 133.         [ Links ]

22. C. Y. Lee, "The Lagrangian for mass dimension one fermions"; arXiv:1404.5307 [hep-th]         [ Links ].

23. Y. X. Liu, X. N. Zhou, K. Yang and F. W. Chen, Phys. Rev. D 86 (2012) 064012; arXiv:1107.2506 [hep-th]         [ Links ].

24. A. Salam and J. Strathdee, Ann. of Phys. 141 (1982) 316.         [ Links ]

25. J. Bagger, N. Lambert, S. Mukhi and C. Papageorgakis, Phys. Rept. 527 (2013) 1; arXiv:1203.3546 [hep-th]         [ Links ].

26. M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory (Cambridge University Press, 1987).         [ Links ]

27. P. A. M. Dirac, Proc. R Soc. A 117 (1928) 610; Proc. R. Soc. A 126 (1930) 360.         [ Links ]

28. R. Flores, J. A. Nieto, J. Tellez, E. A. Leon and E. R. Estrada, Rev Mex. Fis. 59 (4) (2013) 352.         [ Links ]

29. J. A. Nieto and C. Pereyra, Int. J. Mod. Phys. A 28 (2013) 1350114; ArXiv:1305.5787 [physics.gen-ph]         [ Links ].

30. P.G.O. Freund, Introduction to Supersymmetry (Cambridge University Press, Melbourne, 1986).         [ Links ]

31. E. Capelas de Oliveira, W. A. Rodrigues and J. Vaz, Elko Spinor Fields and Massive Magnetic Like Monopoles, arXiv,1306.4645 [math-ph]         [ Links ].

32. M. J. Duff and J. Kalkkinen, Nucl. Phys. B 758 (2006) 161; hep-th/0605273.         [ Links ]

33. This idea emerged as consequence of some referee's comments.

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons