Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.61 no.2 México mar./abr. 2015
Investigación
Optical, structural and morphological properties of CdS-CdCO3 films
M. Chávez Portilloa, A. Sosa Sáncheza, G. Juárez Díazb*, L. A. Chaltel Limac, S. Cruz Cruzd, R. Gutierrez Pérezc, G. Hernández Téllezc and O. Portillo Morenoc **
a Centro de Investigaciones en Dispositivos Semiconductores, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. P. O. Box 1067, Puebla, Pue. 72001 México.
b Facultad de Ciencias de la Computación, Benemérita Universidad Autónoma de Puebla, P. O. Box 1067, Puebla, Pue. 72570 México, * e-mail: j.gabriel@rocketmail.com.
c** Lab. De Ciencias de Materiales, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, P.O. Box 1067, Puebla, Pue. 72001 México, ** e-mail: osporti@yahoo.com.mx.
d Dpto. de Ing. Química, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica No.1, San Pedro Xalcaltzinco, Tepeyanco, Tlax. México.
Received 28 July 2014;
accepted 12 January 2015
Abstract
CdS-CdCO3 thin films were grown by chemical bath deposition. Different constant deposition temperatures were employed in the range of 20-80°C. From X-ray Diffraction (XRD) results can be observed that intensity of CdS peak is abruptly reduced when deposition temperature is decreased. By SEM images the formation and change in shape and size of crystallites can be observed as temperature is decreased. The forbidden energy band gap was 2.4-4.1 eV, determined from optical absorption. The formation of products was further confirmed with FTIR studies.
Keywords: Deposition temperatures; Gibbs energy; coordination complex; Otavite; morphological.
PACS: 06.60.-c; 61.05.cp; 78.40.-q.
DESCARGAR ARTÍCULO EN FORMATO PDF
References
1. C. Gao, W. Zhang, H. Li, L. Lang, and Z. Xu, Cryst. Growth. Des. 8 (2008) 3785. [ Links ]
2. G. Hodes, Phys. Chem. Chem. Phys. 9 (2007) 2181. [ Links ]
3. G.A. Ozin, Adv. Mater. 4 (1992) 612. [ Links ]
4. O. Portillo Moreno, H. Lima Lima, R. Lozada Morales, R. Palomino Merino, O. Zelaya Angel, J. of Mat. Sci. 40 (2005) 4489. [ Links ]
5. O. Portillo Moreno et al, J. of Mat. Sci. and Engin., A1 (2010) 692. [ Links ]
6. R. Melendrez Luevano, et al., J. of Mat. Sci. and Engin., A3 (2013) 289. [ Links ]
7. M. Kokotov and G. Hodes, Chem. Mater, 22 (2010) 5483. [ Links ]
8. S. Gorer and G. Hodes, J. Phys. Chem. 98 (1994) 5338. [ Links ]
9. M. Chávez Portillo, L.A. Chaltel Lima, U. Pena Rosas, G. Hernández Téllez, R. Gutiérrez Pérez, O. Portillo Moreno, Materials Letters 120 (2014) 130-132. [ Links ]
10. S. Ashoka, G. Nagaraju, K.V. Thipperudraiah, G.T. Chandrappa, Materials Research Bulletin 45 (2010) 1736. [ Links ]
11. C. Kiely, J. Fink, J.G. Zheng, M. Brust, D. Bathell, D.J. Schiffrin, Adv. Mat. 12 (2000) 640. [ Links ]
12. P. Yang and F. Kim, Chem. Phys. Chem. 3 (2002) 503. [ Links ]
13. B. Nikoobakht, Z.L. Wang, M.A. El Sayed, J. Chem. Mater, B 15 (2003) 1957. [ Links ]
14. M. Becerril, et al., Mat. Res., 15 (2012) 1. [ Links ]
15. O. Portillo Moreno et al., J. of Electrochem. Soc. 153 (2006) 926. [ Links ]
16. S. John, C. Soukoulis, M.H. Cohen and E.N. Economou, Phys. Rev. Lett. 57 (1986) 1777. [ Links ]
17. S. Ashoka, G. Nagaraju, K.V. Thipperudraiah, G.T. Chandrappa, Mat. Res. Bull. 45 (2010) 1736. [ Links ]
18. R. Palomino Merino, O. Portillo Moreno, L.A. Chaltel Lima, R. Gutiérrez Pérez, M. De Icaza Herrera and V. Castaño, J. of Nanomaterials, 2013 (2013) ID 507647. [ Links ]