Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.61 no.2 México mar./abr. 2015
Investigación
Rod-like fluorescent halloysite nanotubes-silica composites: a novel colloidal system
R. Sáncheza, B.M. Marín-Santibañezb, J. Pérez-Gonzálezc, F. Rodríguez-Gonzálezd, and H.J. Dorantes-Rosalese
a Facultad de Física, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán s/n, Zona Universitaria, Xalapa 91000, Veracruz, México.
b Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, U.P.A.L.M. C.P. 07738, Col. S. P. Zacatenco, Del. Gustavo A. Madero, México D.F., México.
c Laboratorio de Reología y Física de la Materia Blanda, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, U.P.A.L.M. C.P. 07730, Col. S. P. Zacatenco, Del. Gustavo A. Madero, México D.F., México.
d Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, C.P. 62731, Col. San Isidro, Yautepec, Morelos, México.
e Departamento de Metalurgia y Materiales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, U.P.A.L.M. C.P. 07738, Col. S.P. Zacatenco, Del. Gustavo A. Madero, México D.F., México.
Received 17 October 2014;
accepted 21 January 2015
Abstract
An inexpensive novel method to produce a rod-like fluorescent colloidal system is presented in this work. The system consists of core-shell particles synthesized by using halloysite nanotubes as cores, and silica layers as shells on their surfaces. Unlike traditional protocols for producing silica core-shell particles, the method used in this work does not require a coupling agent. In addition, a fluorescent dye was incorporated to produce fluorescent composites. Due to their resulting morphology and the possibility of incorporating a fluorescent dye, they constitute a promising new colloidal model system for studying the physics of anisotropic colloidal suspensions experimentally, as well as a potential source of new materials.
Keywords: Nanoclay composites; core-shell particles; halloysite nanotubes; colloidal rods.
PACS: 81.07.De; 81.05.Pj; 83.80.Hj
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgments
RS acknowledges Consejo Nacional de Ciencia y Tecnología support (Retención 174462) while carrying out part of the present work, and acknowledges use of SARA-UV facilities at Xico, Veracruz. BMMS, JPG, FRG and HJDR are COFAA-EDI fellows. The authors also acknowledge technical assistance from K. García-Morales.
References
1. S. Sacanna, L. Rossi, B.W.M. Kuipers, and A.P. Philipse, Langmuir 22 (2006) 1822-1827. [ Links ]
2. Q. Dong et al., J. Ceram. Soc. Jpn. 117 (2009) 245-248. [ Links ]
3. A. Kuijk, A. van Blaaderen, and A. Imhof, J. Am. Chem. Soc. 133 (2011) 2346-2349. [ Links ]
4. H.K. Choi, S.H. Im, and O.O. Park, Langmuir 26 (2010) 12500-12504. [ Links ]
5. Q. Zhang, S. Zeng, B. Lin, and J. Qin, J. Mater. Chem. 21 (2011) 2466-2469. [ Links ]
6. Z.X. Zhang and J.S. van Duijneveldt, J. Chem. Phys. 124 (2006) 154910. [ Links ]
7. D.C.O. Marney et al., Polym. Degrad. Stab. 93 (2008) 1971-1978. [ Links ]
8. M. Du, B. Guo, J. Wan, Q. Zou, and D. Jia, J. Polym. Res. 17 (2010) 109-118. [ Links ]
9. G. Tari, I. Bobos, C.S.F. Gomes, and J.M.F. Ferreira, J. Colloid Interface Sci. 210 (1999) 360-366. [ Links ]
10. M. Du, B. Guo, and D. Jia, Eur. Polym. J. 42 (2006) 1362-1369. [ Links ]
11. M. Liu, B. Guo, M. Du, X. Cai, and D. Jia, Nanotechnology 18 (2007) 455703. [ Links ]
12 . N. Ning, Q. Yin, F. Luo, Q. Zhang, R. Du, and Q. Fu, Polymer 48 (2007) 7374-7384. [ Links ]
13. S. Rooj, A. Das, V. Thakur, R.N. Mahaling, A. K. Bhowmick, and G. Heinrich, Mater. Des. 31 (2010) 2151-2156. [ Links ]
14. Y. Ye, H. Chen, J. Wu, and L. Ye, Polymer 48 (2007) 64266433. [ Links ]
15. V. Vergaro et al., Biomacromolecules 11 (2010) 820-826. [ Links ]
16. R. Qi, X. Cao, M. Shen, R. Guo, J. Yu, and X. Shi, J. Biomater. Sci. Polym. Ed. 23 (2012) 299-313. [ Links ]
17. H. Ismail, P. Pasbakhsh, M.N.A. Fauzi, and A.A. Bakar, Polym. Test. 27 (2008) 841-850. [ Links ]
18. D.G. Shchukin, and H. Mhwald, Adv. Funct. Mater. 17 (2007) 1451-1458. [ Links ]
19. M.T. Viseras, C. Aguzzi, P. Cerezo, and C. Viseras, Microporous Mesoporous Mater. 108 (2008) 112-116. [ Links ]
20. ] E. Abdullayev, R. Price, D. Shchukin, and Y. Lvov, ACS Appl. Mater. Interfaces 1 (2009) 1437-1443. [ Links ]
21. Y. Lvov and E. Abdullayev, Prog. Polym. Sci. 38 (2013) 1690-1719. [ Links ]
22. W. Stöber and A. Fink, J. Colloid Interface Sci. 26 (1968) 6269. [ Links ]
23. X.D. Wang et al., J. Coll. Interf. Sci. 341 (2010) 23-29. [ Links ]
24. G. Gouadec, and P. Colomban, Progr. Crystal Growth Charact. Mater. 5 (2007) 1-56. [ Links ]
25. L.K. Shrestha, J.S. Wi, J. Williams, M. Akada, and K. Ariga, J. Nanosci. Nanotechnol. 14 (2014) 2245-2251. [ Links ]
26. T. Kasnavia, D. Vu, and D.A. Sabatini, Groundwater 37 (1999) 376-381. [ Links ]
27. S.C. McGrother, D.C. Williamson, and G. Jackson, J. Chem. Phys. 104 (1996) 6755-6771. [ Links ]
28. S.C. McGrother, A. Gil-Villegas, and G. Jackson, Mol. Phys. 95 (1998) 657. [ Links ]
29. C. Avendaño, A. Gil-Villegas, and E. Gonzalez- Tovar, J. Chem. Phys. 128 (2008) 044506. [ Links ]
30. S.V. Savenko and M. Dijkstra, Phys. Rev. E70 (2004) 051401. [ Links ]
31. R. Ni, S. Belli, R. van Roij, and M. Dijkstra, Phys. Rev. Lett. 105 (2010) 088302. [ Links ]
32. M.C. Jenkins and S.U. Egelhaaf, Adv. Colloid Interface Sci. 136 (2008) 65-92. [ Links ]
33. J. Baumgartl, J.L. Arauz-Lara, and C. Bechinger, Soft Matter 2 (2006) 631-635. [ Links ]
34. L. Wang, W. Zhao, and W. Tan, Nano. Res. 1 (2008) 99-115. [ Links ]
35. A. Bitar, N.M. Ahmad, H. Fessi, and A. Elaissari, Drug Discov. Today 17 (2012) 1147-1154. [ Links ]
36. J. Mérian, J. Gravier, F. Navarro, and I. Texier, Molecules 17 (2012) 5564-5591. [ Links ]