SciELO - Scientific Electronic Library Online

 
vol.61 número2Rod-like fluorescent halloysite nanotubes-silica composites: a novel colloidal systemProperties of Er2O3 nanoparticles synthesized by a modified co-precipitation method índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.61 no.2 México mar./abr. 2015

 

Investigación

 

Thin-film transistors based on zinc oxide films by ultrasonic spray pyrolysis

 

M.A. Dominguez-Jimeneza*, F. Flores-Graciaa, A. Luna-Floresa, J. Martinez-Juareza, J.A. Luna-Lopeza, S. Alcantara-Iniestaa, P. Rosales-Quinterob and C. Reyes-Betanzob

 

a Centro de Investigaciones en Dispositivos Semiconductores, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, México. * Tel/Fax: (52)(222) 229-55-00 Ext 7876 e-mail: madominguezj@gmail.com.

b National Institute for Astrophysics, Optics and Electronics, Electronics Department, Luis Enrique Erro No. 1, Puebla, Z.P. 72840, Mexico.

 

Received 7 August 2014;
accepted 30 January 2015

 

Abstract

The application of Zinc Oxide (ZnO) films by ultrasonic spray pyrolysis at 250, 300 and 450°C as active layer in thin-film Transistors (TFTs) is presented. The performance of the devices shows an unexpected behavior in function of the deposition temperature. The ZnO films were deposited from 0.2 M precursor solution of Zinc acetate in methanol, using air as carrier gas. 70nm-thick ZnO was deposited over 100 nm-thick aluminum electrodes patterned on 50 nm-thick thermally grown SiO2 on highly doped Si wafers. The highly doped Si wafer was used as the gate electrode. The ZnO TFTs at 250°C showed field-effect mobilities around of 0.05 cm2/Vs and threshold voltages of 8 V.

Keywords: ZnO; electrical properties; thin film transistors.

 

PACS: 85.30.Tv; 85.30.De

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. S. Fay, U. Kroll, C. Bucher, E. Vallat-Sauvain and A. Shah, Sol. Energy Mater. Sol. Cells 86 (2005) 385-397.         [ Links ] 

2. S.H. Mohamed and R. Drese, Thin Solid Films 513 (2006) 64­71.         [ Links ] 

3. N. Bouhssira, S. Abed, E. Tomasella, J. Cellier, A. Mosbah, Appl. Surf. Sci. 252 (2006) 5594-5597.         [ Links ]

4. J. Nishii et al., Jpn. J. Appl. Phys. 42 (2003) L347 - L349.         [ Links ]

5. M. Olvera, H. Gómez and A. Maldonado, Sol. Energy Mater. Sol. Cells 91 (2007) 1449-1453.         [ Links ]

6. P. Nunes, B. Fernandes, E. Fortunato, P. Vilarinho, R. Martins, Thin Solid Films 337 (1999) 176-179.         [ Links ]

7. G. Adamopoulos et al., Adv. Funct. Mater, 21 (2011) 525-531.         [ Links ]

8. S. Oertel, M. Jank, E. Teuber, A. Bauer and L. Frey, Thin Solid Films 553 (2014) 114-117.         [ Links ]

9. M. Ortel, Y. Trostyanskaya and V. Wagner, Solid State Electronics 86 (2013) 22-26.         [ Links ]

10. Y. Ming, X. Ling, L. Yu, D. Yan and H. Jing, Chin. Phys. Lett. 28 017302 (2011).         [ Links ]

11 . M. Domínguez, P. Rosales and A. Torres, Solid State Electronics 76 (2012) 44-47.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons