Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.61 no.3 México may./jun. 2015
Investigación
Discrete symmetry in graphene: the Dirac equation and beyond
E. Sadurní, E. Rivera-Mociños, and A. Rosado
Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570 Puebla, México. e-mail: sadurni@ifuap.buap.mx;erivera@ifuap.buap.mx;rosado@ifuap.buap.mx
Received 5 January 2015;
accepted 9 February 2015
Abstract
In this paper we review the discrete symmetries of the Dirac equation using elementary tools, but in a comparative order: the usual 3 + 1 dimensional case and the 2 + 1 dimensional case. Motivated by new applications of the 2d Dirac equation in condensed matter (e.g. graphene), we further analyze the discrete symmetries of a full tight-binding model in hexagonal lattices without conical approximations. We touch upon an effective CPT symmetry breaking that occurs when deformations and second-neighbor corrections are considered.
Keywords: 2d Dirac equation; discrete symmetries; graphene; boron nitride.
Resumen
En este artículo revisamos las simetrías discretas de la ecuación de Dirac usando herramientas fundamentales, en un orden comparativo: el caso commi 3 + 1 dimensional y el caso reducido 2 + 1 dimensional. Motivados por nuevas aplicaciones de la ecuación de Dirac 2d en materia condensada (v. gr. grafeno), también analizamos las simetrías discretas de un modelo de amarre fuerte en redes hexagonales más allá de las aproximaciones cónicas. Hacemos breve mención de un rompimiento de simetría CPT efectiva que ocurre cuando se consideran deformaciones de la red e interacciones a segundos vecinos.
Palabras clave: Ecuación de Dirac 2d; simetrías discretas; grafeno; nitruro de boro.
PACS: 03.65.Pm; 11.30.Er; 81.05.ue
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgments
E. S. and E. R.-M. would like to express their gratitude to CONACyT for financial support under project CB2012-180585.
References
1. D. Goldberg et al., ACS Nano 4 (2010) 2979. [ Links ]
2. M.I. Katsnelson, Materials Today 10 (2007) 10. [ Links ]
3. A.K. Geim and K.S. Novoselov, Nature Materials 6 183 (2007). [ Links ]
4. S.D. Sarma, S. Adam, E.H. Hwang, and E. Rossi, Rev. Mod. Phys. 83 (2011) 407. [ Links ]
5. F.D.M. Haldane and S. Raghu, Phys. Rev. Lett. 100 (2008) 013904. [ Links ]
6. S. Raghu and F.D.M. Haldane, Phys. Rev. A 78 (2008) 033834. [ Links ]
7. T. Uehlinger et al., Phys. Rev. Lett. 111 (2013) 185307. [ Links ]
8. J. Ellis and N.E. Mavromatos, Phys. Reports 320 (1994) 341. [ Links ]
9. L. Maiani, in The Second DaΦne Physics Handbook, edited by L. Maiani, G. Pancheri, and N. Paver (INFN, Laboratori Nazionali di Frascati, 1995) Chap. 1, pp. 3- 26. [ Links ]
10. E. Abouzaid et al., Phys. Rev. D 83 (2011) 092001. [ Links ]
11. J. Beringer et al., Phys. Rev. D 86 (2012) 01001. [ Links ]
12. I.F. Herbut, V. Juricic, and B. Roy, Phys. Rev. B 79 (2009) 085116. [ Links ]
13. R. Winkler and U. Zuelicke, ANZIAMJ 0 (2014) 1. [ Links ]
14. VP. Gusynin, S.G. Sharapov, and J.P. Carbotte, Int. J. Mod. Phys. B 21 (2007) 4611. [ Links ]
15. A. Einstein, Ann. der Physik 17 (1905) 891. [ Links ]
16. W. Greiner and B. Müller, Quantum Mechanics: Sym- metries, 2nd ed. (Springer, Berlin, 1994). [ Links ]
17. A.O. Barut, Theory of Group Representations and Ap- plications (World Scientific, Singapore, 1986). [ Links ]
18. H. Georgi, Lie Algebras in Particle Physics, 2nd ed. (Westview Press, 1999). [ Links ]
19 . P.A.M. Dirac, The Principles of Quantum Mechanics (Oxford University Press, 1930). [ Links ]
20. J.D. Bjorken and S. D. Drell, Relativistic Quantum Me- chanics (McGraw Hill, New York, 1964). [ Links ]
21. L.H. Ryder, Quantum Field Theory, 2nd ed. (Cambridge University Press, 1999). [ Links ]
22. G. W. Semenoff, Phys. Rev. Lett. 53 (1984) 2449. [ Links ]
23. S. Bittner, B. Dietz, M. Miski-Oglu, P.O. Iriarte, and F. Schafer, Phys. Rev. B 82 (2010) 014301. [ Links ]
24. K.K. Gomes, W. Mar, W. Ko, F. Guinea, and H.C. Manoharan, Nature 483 (2012) 306. [ Links ]
25. E. Sadurní, J. Phys. A: Math. Theor. 45 (2012) 465302. [ Links ]
26. E. Sadurní, AIP Conf. Proc. 1579 (2014) 39. [ Links ]
27. M. Moshinsky and E. Sadurní, Rev. Mex. Fis. S 54 (2008) 92. [ Links ]
28. E. Sadurní, T.H. Seligman, and F. Mortessagne, New J. Phys. 12 (2010) 053014. [ Links ]
29. P.R. Wallace, Phys. Rev. 71 (1947) 622. [ Links ]
30. These are isolated atomic states, but it is more appropriate to use Wannier functions. For maximally localized states, see [38].
31. R.L. Garwin, L.M. Lederman, and M. Weinrich, Phys. Rev. 105 (1957) 1415. [ Links ]
32. J.P. Lees et al., Phys. Rev. Lett. 109 (2012) 211801. [ Links ]
33. D. Colladay and V.A. Kostelecky, Phys. Rev. D 55 (1997) 6760. [ Links ]
34. A.J. Niemi and G.W. Semenoff, Phys. Rev. Lett. 51 (1983) 2077. [ Links ]
35. J. Quackenbush, Phys. Rev. D 40 (1989) 3408. [ Links ]
36. G. Montambaux, F. Piechon, J.-N. Fuchs, and M.O. Goerbig, Phys. Rev. B 80 (2009) 153412. [ Links ]
37. E. Kalesaki, C. Delerue, C.M. Smith, W. Beugeling, G. Allan, and D. Vanmeakelbergh, Phys. Rev. X 4 (2014) 011010. [ Links ]
38. N. Marzari and D. Vanderbilt, Phys. Rev. B 56 (1997) 12847. [ Links ]