Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.61 no.3 México may./jun. 2015
Investigación
Geometry of spin ½ particles
G. Sobczyk*
Universidad de las Américas-Puebla, Departamento de Físico-Matemáticas, 72820 Puebla, Pue., México.
Received 18 August 2014;
accepted 18 March 2015
Abstract
The geometric algebras of space and spacetime are derived by sucessively extending the real number system to include new mutually anticommuting square roots of ±1. The quantum mechanics of spin 1/2 particles are then expressed in these geometric algebras. Classical 2 and 4 component spinors are represented by geometric numbers which have parity, providing new insight into the familiar bra-ket formalism of Dirac. The classical Dirac Equation is shown to be equivalent to the Dirac-Hestenes equation, so long as the issue of parity is not taken into consideration, the latter quantity being constructed in such a way that it is parity invarient.
Keywords: Bra-ket formalism; geometric algebra; spacetime algebra; Schrödinger-Pauli equation; Dirac equation; Dirac-Hestenes equation; spinor; spinor operator.
PACS: 02.10.Xm; 03.65.Ta; 03.65.Ud
DESCARGAR ARTÍCULO EN FORMATO PDF
References
1. L. Susskind, 9 YouTube Lectures: Quantum Entanglements, Part 1, (Stanford University 2008). [ Links ]
2. T. Dantzig, NUMBER: The Language of Science, Fourth Edition, (Free Press, 1967). [ Links ]
3. W.K. Clifford, On the Classification of Geometric Algebras, in Mathematical Papers by William Kingdon Clifford, edited by Robert Tucker, London, Macmillan and Co., 1882. [ Links ]
4. D. Hestenes, New Foundations for Classical Mechanics, 2nd Ed. (Kluwer 1999). [ Links ]
5. G. Sobczyk, New Foundations in Mathematics: The Geometric Concept of Number, Birkhauser, (New York 2013). http://www.garretstar.com/ [ Links ]
6. G. Sobczyk, Hyperbolic Number Plane, The College Mathematics Journal 26, No. 4 (1995) 268-280. [ Links ]
7. G. Sobczyk, Geometric Matrix Algebra, Linear Algebra and its Applications, 429 (2008) 1163-1173. [ Links ]
8. E. Cartan, The Theory of Spinors, Dover Publications, (New York 1981). [ Links ]
9. D. Hestenes, Spacetime Algebra, (Gordon and Breach 1966). [ Links ]
10. P. Lounesto, Clifford Algebras and Spinors, 2nd Edition. Cambridge University Press, Cambridge, 2001. [ Links ]
11. D. Hestenes, Clifford Algebra and the Interpretation of Quantum Mechanics, in Clifford Algebras and Their Applications in Mathematical Physics, edited by J.S.R. Chisholm and A.K. Common, NATO ASI Series C: Mathematical and Physical Sciences Vol. 183, D. Reidel (Publishing Company 1985). [ Links ]
12. G. Sobczyk, Vector Analysis of Spinors (to appear), http://www.garretstar.com/nyuvas3-10-15.pdf [ Links ]
13. G. Sobczyk, Spacetime Algebra of Dirac Spinors, (2015) (to appear), http://www.garretstar.com/diracspin03-24-15.pdf [ Links ]
14. T.F. Havel, J.L. Doran, Geometric Algebra in Quantum Information Processing, Contemporary Mathematics, ISBN-10: 08218-2140-7, Vol. 305 (2002). [ Links ]
15. C. Doran, A. Lasenby, Geometric Algebra for Physicists, (Cambridge 2007). [ Links ]
16. D.J. Griffiths, Introduction to Quantum Mechanics, (Prentice Hall, Inc. 1995). [ Links ]
17. D. Hestenes and R. Gurtler, Local Observables in Quantum Theory, Am. J. Phys. 39 (1971) 1028-1038. [ Links ]
18. D. Hestenes, Zitterbewegung in Quantum Mechanics, Found Physics 40 (2010) 1-54. http://geocalc.clas.asu.edu/pdf/ZBWinQM15**.pdf http://geocalc.clas.asu.edu/pdf-preAdobe8/LocObsinQT.pdf [ Links ]
19. D. Hestenes, "GEOMETRY OF THE DIRAC THEORY", in: A Symposium on the Mathematics of Physical Space-Time, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Mexico City, 67-96, (1981). http://geocalc.clas.asu.edu/pdf/Geom_Dirac.pdf [ Links ]