SciELO - Scientific Electronic Library Online

 
vol.61 número4Simple algebraic method to study the effects of hydrostatic pressure on the fundamental parameters of a Schottky barrier of metal/n-GaAsContributions to the defocusing effect on pole figure measurements by X-ray diffraction índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.61 no.4 México jul./ago. 2015

 

Investigación

 

Anomalous photon emission from a solid

 

Boris I. Ivlev

 

Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78000 México.

 

Received 4 May 2015.
Accepted 22 May 2015.

 

Abstract

The solution of the wave equation for electron in a solid can be formally singular on some line. The singularity is smeared out within the distance ~ 10-11cm due to electron "vibrations" caused by its interaction with photons. Because of this localization, the large momentum uncertainty results in the local increase of the electron kinetic energy ~ 1 MeV. This energy enhancement is compensated by the local reduction of zero point energy of photons which can be considered as a potential well producing anomalous electron binding. The electron in this well gets to its bottom emitting photons of the total energy ~ 1 MeV (anomalous emission). These effects can occur in a solid when its surface is bombarded by ions with the energy ~ 1 keV. Photons, produced inside the solid, escape from it and can be detected in addition to the usual Bremsstrahlung of incident ions.

Keywords: Ion irradiation; electron binding.

PACS: 79.20.Rf; 03.65.Ge.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. R. H. Ritchie, J. C. Ashley, and L. C. Emerson, Phys. Rev. 135 (1964) A759.         [ Links ]

2. J. Melngailis, J. Vac. Sci. Technol. B 5 (1987) 469.         [ Links ]

3. S. Matsui and Y. Ochiai, Nanotechnology 7 (1996) 247.         [ Links ]

4. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii Quantum Electrodynamics (Pergamon, New York, 1980).         [ Links ]

5. H. B. G. Casimir and D. Polder, Phys. Rev. 73 (1948) 360.         [ Links ]

6. I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Adv. Phys. 10 (1961) 165.         [ Links ]

7. L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon, New York, 1977).         [ Links ]

8. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, New York, 1977).         [ Links ]

9. A. B. Migdal, Qualitative Methods in Quantum Theory (Addison-Wesley, 2000).         [ Links ]

10. R. P. Feynman, R. W. Hellwarth, C. K. Iddings, and P. M. Platzman, Phys. Rev. 127 (1962) 1004.         [ Links ]

11. A. O. Caldeira, and A. J. Leggett, Annals of Physics 149 (1983) 374.         [ Links ]

12. I. S. Gradshtein and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, 1980).         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons