Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.61 no.5 México sep./oct. 2015
Investigación
Solitones no autónomos en fibras ópticas
M. Pérez Maldonado y H.C. Rosu
IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la presa San Jose 2055, Col. Lomas 4a Sección, 78216 San Luis Potosí, S.L.P., México. e-mail: maximino.perez@ipicyt.edu.mx; hcr@ipicyt.edu.mx
Received 28 May 2015.
Accepted 17 June 2015.
Resumen
Soluciones solitónicas de las ecuaciones de Schrödinger no lineales de coeficientes variables que describen muchas situaciones reales de propagación solitónica se pueden obtener usando el mapeo de 'integrabilidad diseñada' a la ecuación estandar de Schrödinger no lineal de coeficientes constantes propuesto por He y Li. En este trabajo se presenta este método para el caso de fibras con ganancia/pérdida y se aplica a los casos de los solitones en fibras (ópticas con amplificadores y los solitones brillantes en fibras no amplificadas.
Palabras Clave: Solitón; ecuación de Schrödinger no lineal; no autónomo; fibra óptica.
Abstract
Soliton solutions of the non-linear Schrödinger equation of variable coefficients which describe many real cases of solitonic propagation can be obtained by means of the 'designable integrability' mapping to the standard non-linear Schrödinger equation of constant coefficients proposed by He and Li. In this paper, this method of obtaining the non-autonomous soliton solutions is presented for the general case of optical fibers with gain/loss, and applied to fibers with amplifiers, and those allowing the propagation of bright solitons.
Keywords: Soliton; non-linear Schrödinger equation; non-autonomous; optical fiber.
PACS: 05.45.Yv; 42.65.Tg; 42.81.Dp
DESCARGAR ARTÍCULO EN FORMATO PDF
Referencias
1. G.P. Agrawal, "Nonlinear Fiber Optics" Third Edition, Academic Press, (1995). [ Links ]
2. A. Hasegawa and M. Matsumoto, "Optical Solitons in Fibers" Third Edition, Springer-Verlag, (2003). [ Links ]
3. M. J. Ablowitz, B. Prinari and A. D. Trubatch, "Discrete and Continuous Nonlinear Schrödinger Systems" Cambrige University Press, (2004). [ Links ]
4. V. I. Talanov, JETP Lett. 11 (1970) 199. [ Links ]
5. J. He and Y. Li, Stud. Appl. Math. 126 (2011) 1. [ Links ]
6. Y. V. Katyshev, N. V. Makhaldiani, and V. G. Makhankov, Phys. Lett. 66A (1978) 456. [ Links ]
7. V. E. Zakharov and A. B. Shabat, JETP 34 (1972) 62. [ Links ]
8. V. I. Kruglov, A. C. Peacock, and J. D. Harvey, Phys. Rev. E 71 (2005) 056619. [ Links ]
9. S. A. Ponomarenko and G. P. Agrawal, Opt. Express 15 (2007) 2963. [ Links ]
10. L. W. Liou and G.P. Agrawal, Opt. Commun. 124 (1996) 500. [ Links ]
11. Z. Y. Yang, L. Y. Zhao, T. Zhang, and R. H. Yue, J. Opt. Soc. Am. B. 28 (2011)236. [ Links ]
12. V. N. Serkin, A. Hasegawa, and T. L. Belyaeva Phys. Rev. Lett. 98 (2007) 074102. [ Links ]
13. D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, Electron. Lett. 31 (1995) 1681. [ Links ]