Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.61 no.5 México sep./oct. 2015
Investigación
Caracterización eléctrica de un oxido de manganeso laminar tipo birnesita
N.P. Ariasa, M.E. Becerraa,b y O. Giraldoa
a Universidad Nacional de Colombia-Sede Manizales, Facultad de Ciencias Exactas y Naturales, Departamento de Física y Química, Laboratorio de Materiales Nanoestructurados y Funcionales, 170004, Cra 27 No 64-60, Manizales-Colombia, e-mail: ohgiraldoo@unal.edu.co
b Universidad de Caldas, Departamento de Química, Calle 65 No 26-10, Manizales-Colombia.
Received 20 February 2015.
Accepted 25 June 2015.
Resumen
En este trabajo se reporta la caracterización de un (óxido de manganeso sintetizado por rutas de estado sólido, análogo al mineral natural denominado birnesita. Los análisis de difracción de rayos X y el estado promedio de oxidación del manganeso muestran que el material tiene una estructura laminar conteniendo manganeso en estados de oxidación (+4) y (+3). Los resultados de microscopía electrónica, área superficial y tamaño de poro revelan la presencia de micro y mesoporos en el material. La espectroscopía de impedancia sugiere que a altas frecuencias se presenta conducción eléctrica en el volúmen y en la frontera de los agregados, en contraste a bajas frecuencias se presenta conductividad iónica asociada a los iones potasio ubicados en la región interlaminar. Los valores de conductividad AC a bajas frecuencias fue de 1.599 x 10-6 Ω-1 cm-1 ya altas frecuencias fue de 6.416 x 10-5 Ω-1 cm-1 lo que se asoció a un aumento en la probabilidad de salto electrónico a medida que se incrementó la frecuencia. El material estudiado puede tener aplicaciones en el campo de las baterías, supercapacitores y catálisis heterogénea, entre otros, por lo que profundizar en la comprensión de los procesos de conducción eléctrica aporta información importante para establecer sus aplicaciones potenciales.
Palabras clave: Birnesita; espectroscopia de impedancia; salto electrónico; conductividad iónica.
Abstract
This paper records the characterization of a manganese oxide synthesized by solid state routes which is analogous to natural mineral called birnessite. The analysis of X-ray diffraction and average oxidation state of manganese show that the material has a lamellar structure containing manganese in oxidation states (+4) and (+3). The results of electron microscopy along with surface area and pore size measurements reveal the presence of micro and mesopores in the material. Impedance spectroscopy suggests that high frequency electrical conduction occurs in the volume and on the border of the aggregates; in contrast, ionic conductivity at low frequencies was associated with potassium ions located in the interlaminar region. AC conductivity values at low frequencies were 1.599 10-6 Ω-1 cm-1and 6.416 x 10-5 Ω-1 cm-1 at high frequencies. These values are associated with an increased probability of electron jumping as frequency increases. These findings contribute to the understanding of electrical conduction processes and provides important information about its potential applications. As a result, this research will prove relevant in the field of batteries, supercapacitors and heterogeneous catalysis, among others.
Keywords: Birnessite; impedance spectroscopy; electron hopping; ionic conductivity.
PACS: 81.70.-q, 72.60.+g, 81.05.Rm.
DESCARGAR ARTÍCULO EN FORMATO PDF
Referencias
1. R. A. Aziz, I. I. Misnon, K. F. Chong, M. M. Yusoff, and R. José, Electrochim. Acta, 113 (2013) 141. [ Links ]
2. B. L. Ellis and L. F. Nazar, Curr. Opin. Solid State Mater. Sci. 16 (2012) 168. [ Links ]
3. J. Zhao, J. Chen, S. Xu, M. Shao, D. Yan, M. Wei, D. G. Evans, and X. Duan, J. Mater. Chem. A, 1 (2013) 8836. [ Links ]
4. J. Zhu, Q. Li, W. Bi, L. Bai, X. Zhang, J. Zhou, and Y. Xie, J. Mater. Chem. A 1 (2013) 8154. [ Links ]
5. H. Terrones, F. López-Urías, and M. Terrones, Scientific Reports 3 (2013) 1549. [ Links ]
6. W. Li, D. Yan, R. Gao, J. Lu, M. Wei, and X. Duan, J. Nanomater. 2013 (2013) 1. [ Links ]
7. N. Cherchour, C. Deslouis, B. Messaoudi, and A. Pailleret, Electrochi. Acta 56 (2011) 9746. [ Links ]
8. X. Cui, G. Liu, and Y. Lin, Nanomedicine: Nanotechnology, Biology and Medicine 1 (2005) 130. [ Links ]
9. S. Cheng, Catal. Today 49 (1999) 303. [ Links ]
10. G. Centi and S. Perathoner, Microporous Mesoporous Mater 107 (2008) 3. [ Links ]
11 . R. Bermejo and M. Deluca, Handbook of Advanced Ceramics (2013) pp. 733. [ Links ]
12. A.C. Gaillot, V. A. Drits, A. Manceau, and B. Lanson, Microporous Mesoporous Mater 98 (2007) 267. [ Links ]
13. S. L. Brock, N. Duan, Z. R. Tian, O. Giraldo, H. Zhou, and S. L. Suib, Chem. Mater. 10 (1998) 2619. [ Links ]
14. A. M. Ewen Silvester, and V. A. Drits, Am. Mineral. 82 (1997) 962. [ Links ]
15. E. S. Victor A. Drits, Anatoli I. Gorshkov, and Alain Manceau, Am. Mineral. 82 (1997) 946. [ Links ]
16. Steven L. Suib, Acc. Chem. Res. 41 (2008) 479. [ Links ]
17. W.-T. Jiang, P.-H. Chang, Y.-S. Wang, Y. Tsai, J.-S. Jean, Z. Li, and K. Krukowski, J. Hazard. Mater. 250-251 (2013) 362. [ Links ]
18. P. Le Goff, N. Baffier, S. Bach, and J. P. Pereira-Ramos, Mater. Res. Bull. 31 (1996) 63. [ Links ]
19. C. L. Lopano, P. J Heaney, J. E Post, J. Hanson, and S. Kormaneni, Am. Mineral. 92 (2007) 380. [ Links ]
20. C. L. Lopano, P. J. Heaney, J. Z. Bandstra, J. E. Post, and S. L. Brantley, Geochim. Cosmochim. Acta 75 (2011) 3973. [ Links ]
21. B. Ma, W. Hou, Y. Han, R. Sun, and Z.-H. Liu, Solid State Sciences 10 (2008) 141. [ Links ]
22. H. Yin, F. Liu, X. Feng, M. Liu, W. Tan, and G. Qiu, J. Hazard. Mater. 196 (2011) 318. [ Links ]
23. Z. Sun, D. Shu, H. Chen, C. He, S. Tang, and J. Zhang, J. Power Sources 216 (2012) 425. [ Links ]
24. M. Nakayama and M. Fukuda, Mater. Lett. 62 (2008) 3561. [ Links ]
25. D. T. Fortin, A. Awaluddin, E. J. Neth, W. S. Willis, S. L. Suib, and C.-L. O' Young, J. Chem. Soc., Chem. Commun. (1994) 2211. [ Links ]
26 . H. Cui, X. Feng, W. Tan, J. He, R. Hu, and F. Liu, Microporous Mesoporous Mater. 117 (2009) 41. [ Links ]
27. M. Nakayama, M. Shamoto, and A. Kamimura, Chem. Mater. 22 (2010) 5887. [ Links ]
28. X. Liu, C. Chen, Y. Zhao, and B. Jia, J. Nanomater. 2013 (2013) 1. [ Links ]
29. O. Ghodbane, J.-L. Pascal, B. Fraisse, and F. D. R. Favier, ACS Applied Materials & Interfaces, 2 (2010) 3493. [ Links ]
30. A. Iyer et al., J. Phys. Chem. C, 116 (2012) 6474. [ Links ]
31. J. Zhou, L. Yu, M. Sun, S. Yang, F. Ye, J. He, and Z. Hao, Ind. Eng. Chem. Res. 52 (2013) 9586. [ Links ]
32. T. Rennert, A. Pohlmeier, and T. Mansfeldt, Environ. Sci. Technol. 39 (2004) 821. [ Links ]
33. M. E. Becerra, N. P. Arias, O. H. Giraldo, F. E. López Suárez, M. J. Illan Gómez, and A. Bueno López, Appl. Catal. B: Environmental 102 (2011) 260. [ Links ]
34. B. A. Pinaud, Z. Chen, D. N. Abram, and T. F. Jaramillo, J. Phys. Chem. C 115 (2011) 11830. [ Links ]
35. E. Eren, H. Gumus, and A. Sarihan, Desalination 279 (2011) 75. [ Links ]
36. B. A. M. Figueira, R. S. Angelica, M. L. d. Costa, D. Biggemann, J. M. R. Mercury, and H. Pöllmann, Microporous and Mesoporous Mater. 179 (2013) 212. [ Links ]
37. M. Händel, T. Rennert, and K. U. Totsche, J. Colloid Interface Sci. 405 (2013) 44. [ Links ]
38. Y. Hu, H. Zhu, J. Wang, and Z. Chen, J. Alloys Compd. 509 (2011) 10234. [ Links ]
39. Y. Liu et al., J. Power Sources 242 (2013) 78. [ Links ]
40. B. Ming, J. Li, F. Kang, G. Pang, Y. Zhang, L. Chen, J. Xu, and X. Wang, J. Power Sources, 198 (2012) 428. [ Links ]
41. L.-X. Yang, Y.-J. Zhu, and G.-F. Cheng, Mater. Res. Bull. 42 (2007) 159. [ Links ]
42. X. Zhang, P. Yu, H. Zhang, D. Zhang, X. Sun, and Y. Ma, Electrochi. Acta 89 (2013) 523. [ Links ]
43. L. Frunza et al., J. Phys. Chem. A 111 (2007) 5166. [ Links ]
44. N. P. Arias, M. T. Dávila, and O. Giraldo, Ionics 19 (2013) 201. [ Links ]
45. A. Cormie, A. Cross, A. F. Hollenkamp, and S. W. Donne, Electrochi. Acta 55 (2010) 7470. [ Links ]
46. Z. Fan, M. Xie, X. Jin, J. Yan, and T. Wei, J. Electroanal. Chem. 659 (2011) 191. [ Links ]
47. S. Franger, S. Bach, J. Farcy, J. P. Pereira-Ramos, and N. Baffier, J. Power Sources 109 (2002) 262. [ Links ]
48. G. Wang, G. Shao, J. Du, Y. Zhang, and Z. Ma, Mater. Chem. Phys. 138 (2013) 108. [ Links ]
49. G. Zhu, L. Deng, J. Wang, L. Kang, and Z.-H. Liu, Colloids Surf. A: Physicochemical and Engineering Aspects 434 (2013) 42. [ Links ]
50. C. Kappenstein et al., Appl. Catal. A: General 234 (2002) 145. [ Links ]
51. A.-C. Gaillot, D. Flot, V. A. Drits, A. Manceau, M. Burghammer, and B. Lanson, Chem. Mater. 15 (2003) 4666. [ Links ]
52. J. Luo, Q. Zhang, A. Huang, O. Giraldo, and S. L. Suib, Inorg. Chem. 38 (1999) 6106. [ Links ]
53. A.-C. Gaillot, D. Flot, V. A. Drits, A. Manceau, M. Burghammer, and B. Lanson, Chem. Mater. 15 (2003) 4666. [ Links ]
54. A.-C. Gaillot, V. A. Drits, A. Plancon, and B. Lanson, Chem. Mater. 16 (2004) 1890. [ Links ]
55. V. A. Drits and C. Tchoubar, X-Ray Diffraction by Disordered Lamellar Structures: Theory and Applications to Microdivided Silicates and Carbons (Springer-Verlag, Berlin Heidelberg, 1990), 1 edn., pp. 371. [ Links ]
56. V. A. Drits, E. Silvester, A. I. Gorshkov, and A. Manceau, Am. Mineral. 82 (1997) 946. [ Links ]
57. S. H. Kim, S. J. Kim, and S. M. Oh, Chem. Mater. 11 (1999) 557. [ Links ]
58. G.-G. Xia et al., Chem. Mater. 13 (2001) 1585. [ Links ]
59. K. S. W. Sing et al., Pure Appl. Chem. 57 (1985) 603. [ Links ]
60. J. B. Arnott, R. P. Williams, A. G. Pandolfo, and S. W. Donne, J. Power Sources 165 (2007) 581. [ Links ]
61. J. C. Villegas, O. H. Giraldo, K. Laubernds, and S. L. Suib, Inorg. Chem. 42 (2003) 5621. [ Links ]
62. J. Landers, G. Y. Gor, and A. V. Neimark, Colloids Surf. A: Physicochemical and Engineering Aspects 437 (2013) 3. [ Links ]
63. M. W. Maddox, J. P. Olivier, and K. E. Gubbins, Langmuir 13 (1997) 1737. [ Links ]
64. E. Barsoukov and J. R. Macdonal, Impedance Spectroscopy. theory, Experiments and applications (Wiley Interscience, 2005), Segunda edn. [ Links ]
65. M. S. Doescher et al., Anal. Chem. 77 (2005) 7924. [ Links ]
66. S. Franger, S. Bach, J. Farcy, J. P. Pereira-Ramos, and N. Baffier, J. Power Sources 109 (2002) 262. [ Links ]
67. P. Knauth, Solid State Ionics 177 (2006) 2495. [ Links ]
68. Professor Dr. Otfried Madelung, Introduction to Solid-State Theory (Springer Berlin Heidelberg, 1978), Vol. 2, Springer Series in Solid-State Sciences. [ Links ]
69. E. Horopanitis, G. Perentzis, and L. Papadimitriou, J. Solid State Electrochem 11 (2007) 1171. [ Links ]
70. K. Funke, Solid State Ionics 18-19 (1986) 183. [ Links ]
71. J. Ross Macdonald, J. Non-Cryst. Solids 212 (1997) 95. [ Links ]
72. D. D. Macdonald, Electrochim. Acta 51 (2006) 1376. [ Links ]
73. A. K. Jonscher, J. Phys. D:Aplll. Phys. 32 (1999) R57. [ Links ]
74. C. Lee, S. Lee, C. Sul, and S. Bae, Physica B: Condensed Matter 239 (1997) 316. [ Links ]
75. J. R. Macdonald, Phys. Rev. B 63 (2001) 052205. [ Links ]
76. M. Pollak, J. Phys. C: Solid State Phys. 14 (1981) 2977. [ Links ]
77. L. Liu, Q. Feng, K. Yanagisawa, and Y. Wang, J. Mater. Sci. Lett. 19 (2000) 2047. [ Links ]
78. J. R. Dygas, M. Kopec, F. Krok, and C. M. Julien, J. Non-Cryst. Solids 353 (2007) 4384. [ Links ]
79. M. A. Ahmed, N. Okasha, and M. A. Gabal, Mater. Chem. Phys. 99 (2006) 197. [ Links ]
80. J. M. Albella and J. M. Martínez-Duart, Fundamentos de Electronica Fisica y Microelectrónica (Addison-Wesley Iberoamericana S. A, Wilmington-Delawere, 1996). [ Links ]