SciELO - Scientific Electronic Library Online

 
vol.61 número6Dynamics of the population grating formation in erbium-doped fibersObservation of Cosmic Ray at the top of the Sierra Negra volcano in Mexico with the SciCRT prototype índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.61 no.6 México nov./dic. 2015

 

Investigación

 

Supersymmetric features of the Error and Dawson's functions

 

M.A. Reyes and R. Arcos-Olalla

 

Departamento de Física, Universidad de Guanajuato, Apartado Postal E143, 37150 León, Gto., México.

 

Received 4 May 2015;
accepted 14 September 2015

 

Abstract

Following a letter by Bassett, we show first that it is possible to find an analytical approximation to the error function in terms of a finite series of hyperbolic tangents from the supersymmetric (SUSY) solution of the Poschl-Teller eigenvalue problem in quantum mechanics (QM). Afterwards, we show that the second order differential equation for the derivatives of Dawson's function can be found in another SUSY related eigenvalue problem, where the factorization of the simple harmonic oscillator Hamiltonian renders the wrong-sign Hermite differential equation, and that Dawson's second order differential equation possess a singular SUSY type relation to this equation.

Keywords: Supersymmetry; error function; Dawson's function.

PACS: 02.30.Gp; 02.30.Mv; 05.10.Ln; 11.30.Pb

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products (seventh edition), (Elsevier, 2007) p. 887, sect. 8.25.         [ Links ]

2. B. Bassett, Comput. Math Appl. 36 (1998) 37-45; also in Report-No-SISSA-64-96-A.         [ Links ]

3. S. Winitzki, Computational Science and Its Applications -ICCSA 2003, Lecture Notes in Computer Science 2667 (2003) 780-789.         [ Links ]

4. M. Chiani, D. Dardari, and M.K. Simon, IEEE Trans. Commun. 2 (2003) 840-845.         [ Links ]

5. G.K. Karagiannidis, A.S. Lioumpas, Commun. Lett., IEEE 11 (2007) 644-646.         [ Links ]

6. G. Poschl, E. Teller, Zeitschrift fur Physik 83 (1933) 143-151        [ Links ]

7. L. Infeld and T.E. Hull, Rev. Mod. Phys. 23 (1951) 21.         [ Links ]

8. J.I. Díaz, J. Negro, L.M. Nieto, and O. Rosas-Ortiz, J. Phys. A: Math. Gen. 32 (1999) 8447-8460.         [ Links ]

9. Erno Sajo, J. Phys. A: Math. Gen. 26 (1993) 2977-2987.         [ Links ]

10. W.J. Cody, A. Paciorek Kathleen, and C. Jr. Thacher Henry, Math. Comp. 24 (1970) 171-178.         [ Links ]

11. R. Arcos-Olalla, M.A. Reyes, and H.C. Rosu, Physics Letters A 376 (2012) 2860-2865.         [ Links ]

12. B. Mielnik, J. Math. Phys. 25 (1984) 3387-3389.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons