SciELO - Scientific Electronic Library Online

 
vol.62 número1Simulation of cylindrical Poiseuille flow in multiparticle collision dynamics using explicit fluid-wall confining forcesAutomatización de un microscopio de barrido por efecto túnel utilizando una tarjeta OMB-DaqBoard/2000 y LabVIEW índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.62 no.1 México ene./feb. 2016

 

Investigación

 

Conversion of zero point energy into high-energy photons

 

B.I. Ivlev

 

Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78000 México.

 

Received 27 July 2015;
accepted 5 November 2015

 

Abstract

An unusual phenomenon, observed in experiments, is studied. X-ray laser bursts of keV energy are emitted from a met al where long-living states, resulting in population inversion, are totally unexpected. Anomalous electron-photon states are revealed to be formed inside the met al. These states are associated with narrow, 10-11 cm, potential well created by the local reduction of zero point electromagnetic energy. In contrast to analogous van der Waals potential well, leading to attraction of two hydrogen atoms, the depth of the anomalous well is on the order of 1 MeV . The states in that well are long-living which results in population inversion and subsequent laser generation observed. The X-ray emission, occurring in transitions to lower levels, is due to the conversion of zero point electromagnetic energy.

Keywords: Glow discharge; X-ray laser radiation.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, New York, 1977).         [ Links ]

2. H. B. G. Casimir, Proc. K. Ned. Akad. Wet., Amsterdam 51 (1948) 793.         [ Links ]

3. H. B. G. Casimir and D. Polder, Phys. Rev. 73 (1948) 360.         [ Links ]

4. I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Adv. Phys. 10 (1961) 165.         [ Links ]

5. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii Quantum Electrodynamics (Pergamon, New York, 1980).         [ Links ]

6. R. L. Forward, Phys. Rev. B 30 (1984) 1700.         [ Links ]

7. D. C. Cole and H. E. Puthoff, Phys. Rev. E 48 (1993) 1562.         [ Links ]

8. G. E. Volovik, arXiv:gr-qc/0604062.

9. L. I. Booth, Spec. Sci. Tech. 10 (1987) 201.         [ Links ]

10. H. E. Puthoff, Spec. Sci. Tech. 13 (1990) 247.         [ Links ]

11. B. I. Ivlev, Rev. Mex. Fis. 61 (2015) 287.         [ Links ]

12. A. B. Karabut, E. A. Karabut, and P. L. Hagelstein, J. Condensed Matter Nucl. Sci. 6 (2012) 217.         [ Links ]

13. A. B. Karabut and E. A. Karabut, J. Condensed Matter Nucl. Sci. 8 (2012) 159.         [ Links ]

14. R. P. Feynman, R. W. Hellwarth, C. K. Iddings, and P. M. Platzman, Phys. Rev. 127 (1962) 1004.         [ Links ]

15. A. O. Caldeira, and A. J. Leggett, Annals of Physics 149 (1983) 374.         [ Links ]

16. A. B. Migdal, Qualitative Methods in Quantum Theory (Addison-Wesley, 2000).         [ Links ]

17. T. H. Boyer, Phys. Rev. 182 (1969) 1374.         [ Links ]

18. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, 1965).         [ Links ]

19. A. M. Perelomov and Ya. B. Zeldovich, Quantum Mechanics (Selected Topics) (World Scientific Publishing, 1998).         [ Links ]

20. S. F. Edwards, Phys. Rev. 90 (1953) 284.         [ Links ]

21. L. D. Landau, A. A. Abrikosov, and I. M. Khalatnikov, Dokl. Akad. Nauk. 95 (1954) 1177.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons