Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.62 no.2 México mar./abr. 2016
Investigación
Symmetries of the hamiltonian operator and constants of motion
G.F. Torres del Castillo1 and J.E. Herrera Flores2
1 Departamento de Física Matemática, Instituto de Ciencias, Universidad Autónoma de Puebla, 72570 Puebla, Pue., México.
2 Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Puebla, 72570 Puebla, Pue., México.
Received 15 October 2015;
accepted 25 November 2015
Abstract
It is shown that, in the framework of non-relativistic quantum mechanics, any conserved Hermitian operator (which may depend explicitly on the time) is the generator of a one-parameter group of unitary symmetries of the Hamiltonian and that, conversely, any one-parameter family of unitary symmetries of the Hamiltonian is generated by a conserved Hermitian operator.
Keywords: Conserved quantities; symmetries.
Resumen
Se muestra que, en el marco de la mecánica cuántica no relativista, cualquier operador hermitiano conservado (el cual puede depender explícitamente del tiempo) es el generador de un grupo uniparamétrico de simetrías unitarias del hamiltoniano y que, recíprocamente, cualquier familia uniparamétrica de simetrías unitarias del hamiltoniano es generada por un operador hermitiano conservado.
Palabras clave: Cantidades conservadas; simetrías.
PACS: 03.65.-w
DESCARGAR ARTÍCULO EN FORMATO PDF
References
1. A.S. Davydov, Quantum Mechanics (Pergamon Press, Oxford, 1965), §19. [ Links ]
2. W. Greiner and B. Müller, Quantum Mechanics: Symmetries, 2nd ed. (Springer-Verlag, Berlin, 1994). [ Links ]
3. J. Singh, Quantum Mechanics: Fundamentals and Applications to Technology (Wiley, New York, 1997), sec. 6.2 [ Links ]
4. E. Merzbacher, Quantum Mechanics, 3rd ed. (Wiley, New York, 1998), chap. 17. [ Links ]
5. N. Zettili, Quantum Mechanics: Concepts and Applications (Wiley, Chichester, 2001), sec. 3.7.3. [ Links ]
6. J.J. Sakurai and J. Napolitano, Modern Quantum Mechanics, 2nd ed. (Addison-Wesley, San Francisco, 2011), sec. 4.1. [ Links ]
7. J. Pade, Quantum Mechanics for Pedestrians 2: Applications and Extensions (Springer, Cham, 2014), sec. 21.1.1. [ Links ]
8. K. Gottfried and T.-M. Yan, Quantum Mechanics: Fundamentals, 2nd ed. (Springer-Verlag, New York, 2003), sec. 2.5 and chap. 7. [ Links ]
9. S. Weinberg, Lectures on Quantum Mechanics (Cambridge University Press, Cambridge, 2013), secs. 3.4-3.6. [ Links ]