SciELO - Scientific Electronic Library Online

 
vol.47 número2Upper Main Sequence Stars with Anomalous Abundances: The HGMN Stars HR 3273, HR 8118, HR 8567 and HR 8937Spectral Morphology and Rotation in The Open Cluster NGC 6025 índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de astronomía y astrofísica

versión impresa ISSN 0185-1101

Rev. mex. astron. astrofis vol.47 no.2 Ciudad de México oct. 2011

 

 On The Stellar And Baryonic Mass Fractions Of Central Blue And Red Galaxies

 

A. Rodríguez–Puebla,1 V. Avila–Reese,1 C. Firmani,1,2 and P. Colín3

 

1 Instituto de Astronomía, Universidad Nacional Autónoma de México, México.Apdo. Postal 70–264, 04510, Mexico, D.F., Mexico (apuebla@astroscu.unam.mx).

2 Osservatorio Astronomico di Brera, via E.Bianchi 46, I–23807 Merate, Italy.

3 Centro de Radioastronomía y Astrofísica, UniversidadNacional Autónoma de Mexico, Apdo. Postal 72–3 (Xangari), Morelia, Michoacaán 58089, Mexico.

 

Received 2011 January 21
Accepted 2011 April 14

 

RESUMEN

Con la tecnica del empate de abundancias, las relaciones locales masa estelar y bariónica–masa de halo (MsMh y MbMh) para galaxias centrales azules y rojas (GAs y GRs) se infieren por separado. Se hace uso de las funciones de masa estelar galáctica observadas de GAs y GRs y las respectivas relaciones masa de gas–Ms. Las funciones de masa de halos asociados a las GAs y GRs centrales se toman de una descomposición adecuadamente obtenida de la función de halos distinguibles ACDM. Para Mh >~ 1011.5 ΜΘ, la Ms de GRs tiende a ser mayor que la de GAs a una dada Mh, pero no más que un factor ~1.7. Para Mh >~ 1011.5 ΜΘ, esta tendencia se invierte. Para GAs (GRs): (a) el máximo de fs= Ms /Mh es 0.021+0.016 -0.009 (0.034 +0.026 -0.015) y se alcanza a log (Mh / ΜΘ) = 12.0 (= 11.9); (b) fs ∞Mh(fs ∞Mh3) hacia el lado de bajas masas, mientras que en el otro extremo fs ∞ Mh–0'4 (fs ∞ Mh–0.6). Las fb= Mb / Mh de GAs y GRs son cercanas para Mh >~ 1011.7 ΜΘ, y alcanzan valores maximos de fb = 0.028 +0.018 -0.011 y fb = 0.034 +0.025 -0.014. Hacia masas menores la dependencia de fb sobre Mh es mucho más empinada para GRs que para GAs. Discutimos las diferencias encontradas para las relaciones fs–Mh y fb– Mh entre GAs y GRs a la luz de inferencias semi–empíricas de evolución galáctica.

 

ABSTRACT

Using the abundance matching technique, we infer the local stellar and baryonic mass–halo mass ( Ms– Mh and Mb – Mh) relations separately for central blue and red galaxies (BGs and RGs). The observational inputs are the SDSS central BG and RG stellar mass functions and the measured gas mass–Ms relations. For halos associated to central BGs, the distinct ACDM halo mass function is used and set up to exclude: (i) the observed group/cluster mass function and (ii) halos with a central major merger at resdshifts z ≤ 0.8. For central RGs, the complement of this 5 mass function to the total one is used. At Mh > 1011.5 ΜΘ, the Ms of RGs tend to be higher than those of BGs for a given Mh, the difference not being larger than 1.7. At Mh < 1011.5 ΜΘ, this trend is inverted. For BGs (RGs): (a) the maximum value of fs = Ms / Mh is 0.021+0.016 -0.009 (0.034 +0.026 -0.015)and it is attained at log(MhΘ) = 12.0 (= 11.9); (b) fs ∞ Mh ( fs ∞ Mh3) at the low–mass end while at the high–mass end, fs ∞ Mh–0.4 (fs ∞ Mh–06). The baryon mass fractions, fb = Mb / Mh, of BGs and RGs reach maximum values of fb = 0.028 +0.018 -0.011 y fb = 0.034 +0.025 -0.014., respectively. At Mh < 1011.3 ΜΘ, the dependence of fb on Mh is much steeper for RGs than for BGs. We discuss the differences found in the fs – Mh and fb – Mh relations between BGs and RGs in the light of semi–empirical galaxy evolution inferences.

Key Words: dark matter — galaxies: luminosity function, mass function.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

ACKNOWLEDGMENTS

We thank the referee for his/her useful comments and suggestions. We are grateful to Dr. S. More for sending us in electronic form the data plotted in Figure 8. A.R–P. Acknowledges a graduate student fellowship provided by Conacyt. We thank PAPIIT–Universidad Nacional Autónoma de México grant IN114509 and Conacyt grant 60354 for partial funding, as well as a bilateral DFG–Conacyt grant through which we got access to results from N–body numerical simulations performed by Dr. S. Gottloeber.

 

REFERENCES

Avila–Reese, V. 2007, in Ap & SS Proc., Stellar and Galactic Connections Between Particle Physics and Astrophysics, ed. A. Carrammana et al. (Berlin: Springer), 115 (arXiv:astro–ph/0605212v1).         [ Links ]

Avila–Reese, V., Zavala, J., Firmani, C., & Hernández–Toledo, H. M. 2008, AJ, 136, 1340.         [ Links ]

Baldry, I. K., Balogh, M. L., Bower, R. G., Glazebrook, K., Nichol, R. C., Bamford, S. P., & Budavari, T. 2006, MNRAS, 373, 469.         [ Links ]

Baldry, I. K., Glazebrook, K., & Driver, S. P. 2008, MNRAS, 388, 945.         [ Links ]

Baugh, C. M. 2006, Rep. Prog. Phys., 69, 3101.         [ Links ]

Behroozi, P. S., Conroy, C., & Wechsler, R. H. 2010, ApJ, 717, 379 (BCW10).         [ Links ]

Bell, E. F., McIntosh, D. H., Katz, N., & Weinberg, M. D. 2003, ApJS, 149, 289.         [ Links ]

Benson, A. J. 2010, Phys. Rep., 495, 33.         [ Links ]

Benson, A. J., Bower, R. G., Frenk, C. S., Lacey, C. G., Baugh, C. M., & Cole, S. 2003, ApJ, 599, 38.         [ Links ]

Berlind, A. A., & Weinberg, D. H. 2002, ApJ, 575, 587.         [ Links ]

Bernardi, M., Shankar, F., Hyde, J. B., Mei, S., Marulli, F., & Sheth, R. K. 2010, MNRAS, 404, 2087.         [ Links ]

Blanton, M. R., & Moustakas, J. 2009, ARA & A, 47, 159.         [ Links ]

Boylan–Kolchin, M., Ma, C.–P., & Quataert, E. 2008, MNRAS, 383, 93.         [ Links ]

Chabrier, G. 2003, PASP, 115, 763.         [ Links ]

Cole, S., et al. 2001, MNRAS, 326, 255.         [ Links ]

Conroy, C., Gunn, J. E., & White, M. 2009, ApJ, 699, 486.         [ Links ]

Conroy, C., & Wechsler, R. H. 2009, ApJ, 696, 620.         [ Links ]

Conroy, C., Wechsler, R. H., & Kravtsov, A. V. 2006, ApJ, 647, 201.         [ Links ]

de Lapparent, V., & Slezak, E. 2007, A & A, 472, 29.         [ Links ]

Dutton, A. A., Conroy, C., van den Bosch, F. C., Prada, F., & More, S. 2010, MNRAS, 407, 2.         [ Links ]

Dutton, A. A., & van den Bosch, F. C. 2009, MNRAS, 396, 14.         [ Links ]

Dutton, A. A., van den Bosch, F. C., Dekel, A., & Courteau, S. 2007, ApJ, 654, 27.         [ Links ]

Firmani, C., & Avila–Reese, V. 2000, MNRAS, 315, 457        [ Links ]

––––––––––. 2010, ApJ, 723, 755 (FA10).         [ Links ]

Gallazzi, A., & Bell, E. F. 2009, ApJS, 185, 253.         [ Links ]

Giocoli, C., Tormen, G., Sheth, R. K., & van den Bosch, F. C. 2010, MNRAS, 404, 502.         [ Links ]

Gnedin, O. Y., Weinberg, D. H., Pizagno, J., Prada, F., & Rix, H.–W. 2007, ApJ, 671, 1115.         [ Links ]

Governato, F., Mayer, L., & Brook, C. 2008, in ASP Conf. Ser. 396, Formation and Evolution of Galaxy Disks, ed. J. G. Funes, S. J., & E. M. Corsini (San Francisco: ASP), 453.         [ Links ]

Guo, Q., White, S., Li, C., & Boylan–Kolchin, M. 2010, MNRAS, 367.         [ Links ]

Heinämäki, P., Einasto, J., Einasto, M., Saar, E., Tucker, D. L., & Müller, V. 2003, A & A, 397, 63.         [ Links ]

Komatsu, E., et al. 2009, ApJS, 180, 330.         [ Links ]

Kravtsov, A. V., Berlind, A. A., Wechsler, R. H., Klypin, A. A., Gottlöber, S., Allgood, B., & Primack, J. R. 2004, ApJ, 609, 35.         [ Links ]

Li, C., Kauffmann, G., Jing, Y. P., White, S. D. M., Börner, G., & Cheng, F. Z. 2006, MNRAS, 368, 21.         [ Links ]

Li, C., & White, S. D. M. 2009, MNRAS, 398, 2177.         [ Links ]

Li, Y.–S., & White, S. D. M. 2008, MNRAS, 384, 1459.         [ Links ]

Mandelbaum, R., Seljak, U., & Hirata, C. M. 2008, JCAP, 8, 6.         [ Links ]

Mandelbaum, R., Seljak, U., Kauffmann, G., Hirata, C. M., & Brinkmann, J. 2006, MNRAS, 368, 715.         [ Links ]

Marinoni, C., & Hudson, M. J. 2002, ApJ, 569, 101.         [ Links ]

Martínez, H. J., Zandivarez, A., Merchán, M. E., & Domínguez, M. J. L. 2002, MNRAS, 337, 1441.         [ Links ]

McGaugh, S. S. 2005, ApJ, 632, 859.         [ Links ]

Mo, H.J., Mao, S., & White, S.D.M. 1998, MNRAS, 295,319.         [ Links ]

More, S., van den Bosch, F. C., Cacciato, M., Mo, H. J., Yang, X., & Li, R. 2009, MNRAS, 392, 801.         [ Links ]

More, S., van den Bosch, F. C., Cacciato, M., Skibba, R., Mo, H. J., & Yang, X. 2011, MNRAS, 410, 210.         [ Links ]

Moster, B. P., Somerville, R. S., Maulbetsch, C., van den Bosch, F. C., Macciò, A. V., Naab, T., & Oser, L. 2010, ApJ, 710, 903.         [ Links ]

Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493.         [ Links ]

Norberg, P., et al. 2001, MNRAS, 328, 64.         [ Links ]

Padilla, N., Lambas, D. G., & Gonzaález, R. 2010, MNRAS, 409, 936.         [ Links ]

Peacock, J. A., & Smith, R. E. 2000, MNRAS, 318, 1144.         [ Links ]

Press, W. H., & Schechter, P. 1974, ApJ, 187, 425.         [ Links ]

Przybilla, N., Tillich, A., Heber, U., & Scholz, R.–D. 2010, ApJ, 718, 37.         [ Links ]

Robertson, B., Yoshida, N., Springel, V., & Hernquist, L. 2004, ApJ, 606, 32.         [ Links ]

Sakamoto, T., Chiba, M., & Beers, T. C. 2003, A & A, 397, 899.         [ Links ]

Schulz, A. E., Mandelbaum, R., & Padmanabhan, N. 2010, MNRAS, 408, 1463.         [ Links ]

Shankar, F., Lapi, A., Salucci, P., De Zotti, G., & Danese, L. 2006, ApJ, 643, 14.         [ Links ]

Shao, Z., Xiao, Q., Shen, S., Mo, H. J., Xia, X., & Deng, Z. 2007, ApJ, 659, 1159.         [ Links ]

Sheth, R. K., & Tormen, G. 1999, MNRAS, 308, 119 (ST).         [ Links ]

Skibba, R. A., van den Bosch, F. C., Yang, X., More, S., Mo, H., & Fontanot, F. 2011, MNRAS, 410, 417.         [ Links ]

Smith, M. C., et al. 2007, MNRAS, 379, 755.         [ Links ]

Stewart, K. R., Bullock, J. S., Barton, E. J., & Wechsler, R. H. 2009, ApJ, 702, 1005.         [ Links ]

Stringer, M. J., & Benson, A. J. 2007, MNRAS, 382, 641.         [ Links ]

Tinker, J., et al. 2008, ApJ, 688, 709.         [ Links ]

Tucker, D. L., et al. 2000, ApJS, 130, 237.         [ Links ]

Vale, A., & Ostriker, J. P. 2004, MNRAS, 353, 189.         [ Links ]

van den Bosch, F. C. 2000, ApJ, 530, 177.         [ Links ]

Wang, L., & Jing, Y. P. 2010, MNRAS, 402, 1796.         [ Links ]

Wang, Y., et al. 2009, ApJ, 697, 247.         [ Links ]

Wei, L. H., Kannappan, S. J., Vogel, S. N., & Baker, A. J. 2010, ApJ, 708, 841.         [ Links ]

Weinmann, S. M., van den Bosch, F. C., Yang, X., & Mo, H. J. 2006, MNRAS, 366, 2.         [ Links ]

Wilkinson, M. I., & Evans, N. W. 1999, MNRAS, 310, 645.         [ Links ]

White, S. D. M., & Frenk, C. S. 1991, ApJ, 379, 52.         [ Links ]

White, S. D. M., & Rees, M. J. 1978, MNRAS, 183, 341.         [ Links ]

Xue, X. X., et al. 2008, ApJ, 684, 1143.         [ Links ]

Yang, X., Mo, H. J., Jing, Y. P., van den Bosch, F. C., & Chu, Y. 2004, MNRAS, 350, 1153.         [ Links ]

Yang, X., Mo, H. J., & van den Bosch, F. C. 2003, MNRAS, 339, 1057.         [ Links ]

––––––––––. 2008, ApJ, 676, 248.         [ Links ]

––––––––––. 2009, ApJ, 695, 900 (YMB09).         [ Links ]

Yang, X., Mo, H. J., van den Bosch, F. C., Pasquali, A., Li, C., & Barden, M. 2007, ApJ, 671, 153.         [ Links ]

Zehavi, I., et al. 2005, ApJ, 630, 1.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons