Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de astronomía y astrofísica
versión impresa ISSN 0185-1101
Rev. mex. astron. astrofis vol.50 no.2 Ciudad de México oct. 2014
Quark nova signatures in super-luminous supernovae
M. Kostka,1 N. Koning,1 D. Leahy,1 R. Ouyed,1 and W. Steffen2
1 Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada, T2N 1N4 (nico.koning, mkostka, leahy, rouyed@ucalgary.ca).
2 Instituto de Astronomía Universidad Nacional Autónoma de México, Ensenada, B.C., México (wstef-fen@astro.unam.mx).
Received 2013 August 14.
Accepted 2014 March 3.
RESUMEN
Censos observacionales recientes han revelado la existencia de supernovas super-luminosas (SLSNe). En este trabajo estudiamos las curvas de luz de ocho SLSNe en el contexto del modelo de las novas-quark de choque dual. Encontramos que estrellas progenitoras con masas entre 25 y 35Mʘ proporcionan energía más que suficiente para explicar las curvas de luz de las SLSNe. Se examinan los efectos de una variación de los parámetros físicos de la nova-quark de choque dual sobre las curvas de luz. Concluimos que la amplia variedad de morfologías de las curvas de luz de las SLSNe puede ser explicada principalmente por variaciones en el lapso de tiempo entre la supernova y la nova-quark. Nuestro análisis muestra que el perfil Hα singular encontrado en tres SLSNe puede ser descrito naturalmente en el escenario de las novas-quark de choque dual. Se presentan algunos rasgos espectrales predichos específicamente por el modelo de las quark-novas de choque dual.
ABSTRACT
Recent observational surveys have uncovered the existence of super-luminous supernovae (SLSNe). In this work we study the light curves of eight SLSNe in the context of dual-shock quark novae. We find that progenitor stars in the range of 25 - 35Mʘ provide ample energy to power each light curve. An examination into the effects of varying the physical properties of a dual-shock quark nova on light curve composition is undertaken. We conclude that the wide variety of SLSN light curve morphologies can be explained predominantly by variations in the length of time between supernova and quark nova. Our analysis shows that a singular Hα spectral profile found in three SLSNe can be naturally described in the dual-shock quark nova scenario. Predictions of spectral signatures unique to the dual-shock quark nova are presented.
Key Words: dense matter radiative transfer stars: evolution supernovae: general.
DESCARGAR ARTÍCULO EN FORMATO PDF
REFERENCES
Alcock, C, Farhi, E., & Olinto, A. 1986, ApJ, 310, 261 [ Links ]
Arnett, W. D. 1982, ApJ, 253, 785 [ Links ]
Berezhiani, Z., Bombaci, I., Drago, A., Frontera, F., & Lavagno, A. 2003, ApJ, 586, 1250 [ Links ]
Blinnikov, S. I. 2008, in AIP Conf. Ser. 1016, Origin of Matter and Evolution of Galaxies, ed. T. Suda, T. Nozawa, A. Ohnishi, K. Kato, M. Y. Fujimoto, T. Kajino, & S. Kubono (Melville, NY: AIP), 241 [ Links ]
Bodmer, A. R. 1971, Phys. Rev. D, 4, 1601 [ Links ]
Bombaci, I. & Datta, B. 2000, ApJ, 530, L69 [ Links ]
Bucciantini, N., Quataert, E., Metzger, B. D., Thompson, T. A., Arons, J., & Del Zanna, L. 2009, MNRAS, 396, 2038 [ Links ]
Cheng, K. S. & Dai, Z. G. 1996, Phys. Rev. Lett., 77, 1210 [ Links ]
Chevalier, R. A. 1982, ApJ, 258, 790 [ Links ]
----------. 2012, ApJ, 752, L2 [ Links ]
Chevalier, R. A. & Irwin, C. M. 2011, ApJ, 729, L6 [ Links ]
----------. 2012, ApJ, 747, L17 [ Links ]
Dai, Z., Peng, Q., & Lu, T. 1995, ApJ, 440, 815 [ Links ]
Dessart, L., Hillier, D. J., Waldman, R., Livne, E., & Blondin, S. 2012, MNRAS, 426, L76 [ Links ]
Drake, A. J., et al. 2009, ApJ, 696, 870 [ Links ]
Drake, A. J., et al. 2010, ApJ, 718, L127 [ Links ]
Fryer, C. L. 1999, ApJ, 522, 413 [ Links ]
Gal-Yam, A., et al. 2009, Nature, 462, 624 [ Links ]
Gezari, S., et al., 2009, ApJ, 690, 1313 [ Links ]
Ginzburg, S., & Balberg, S. 2012, ApJ, 757, 178 [ Links ]
Grassberg, E. K., Imshennik, V. S., & Nadyozhin, D. K. 1971, Ap & SS, 10, 28 [ Links ]
Hwang, U. & Laming, J. M. 2012, ApJ, 746, 130 [ Links ]
Itoh, N. 1970, Prog. Theor. Phys., 44, 291 [ Links ]
Kasen, D., & Bildsten, L. 2010, ApJ, 717, 245 [ Links ]
Kasen, D., Woosley, S. E., & Heger, A. 2011, ApJ, 734, 102 [ Links ]
Kawabata, K. S., Tanaka, M., Maeda, K., Hattori, T., Nomoto, K., Tominaga, N., & Yamanaka, M. 2009, ApJ, 697, 747 [ Links ]
Keränen, P., Ouyed, R., & Jaikumar, P. 2005, ApJ, 618, 485 [ Links ]
Kiewe, M., et al. 2012, ApJ, 744, 10 [ Links ]
Koning, N., Ouyed, R., & Leahy, D. 2012, ArXiv:1205.4355 [astro-ph.HE] [ Links ]
Law, N. M., et al. 2009, PASP, 121, 1395 [ Links ]
Leahy, D., & Ouyed, R. 2008, MNRAS, 387, 1193 [ Links ]
Miller, A. A., et al. 2009, ApJ, 690, 1303 [ Links ]
Moriya, T. J., Blinnikov, S. L, Tominaga, N., Yoshida, N., Tanaka, M., Maeda, K., & Nomoto, K. 2013, MNRAS, 428, 1020 [ Links ]
Niebergal, B., Ouyed, R., & Jaikumar, P. 2010, Phys. Rev. C, 82, 062801 [ Links ]
Olinto, A. V. 1987, Phys. Lett. B, 192, 71 [ Links ]
Ouyed, R. 2013, MNRAS, 428, 236 [ Links ]
Ouyed, R., Dey, J., & Dey, M. 2002, A & A, 390, L39 [ Links ]
Ouyed, R., Kostka, M., Koning, N., Leahy, D. A., & Steffen, W. 2012, MNRAS, 3043 (Paper I) [ Links ]
Ouyed, R., & Leahy, D. 2009, ApJ, 696, 562 [ Links ]
Ouyed, R., Leahy, D., & Niebergal, B. 2007a, A & A, 473, 357 [ Links ]
----------. 2007b, A & A, 475, 63 [ Links ]
Ouyed, R., Leahy, D., Ouyed, A., & Jaikumar, P. 2011a, Phys. Rev. Lett., 107, 151103 [ Links ]
Ouyed, R., Leahy, D., Staff, J., & Niebergal, B. 2009, Adv. Astron., 463521 [ Links ]
Ouyed, R., Staff, J., & Jaikumar, P. 2011b, ApJ, 729, 60 [ Links ]
Pan, T., Loeb, A., & Kasen, D. 2012, MNRAS, 2979 [ Links ]
Pastorello, A., et al. 2010, ApJL, 724, L16 [ Links ]
Quimby, R., Castro, F., Mondol, P., Caldwell, J., & Terrazas, E. 2007a, Central Bureau Electronic Telegrams, 793, 1 [ Links ]
Quimby, R. M., Aldering, G., Wheeler, J. C., Höflich, P., Akerlof, C. W., & Rykoff, E. S. 2007b, ApJ, 668, L99 [ Links ]
Quimby, R. M., Castro, F., Gerardy, C. L., Hoeflich, P., Kannappan, S. J., Mondol, P., Sellers, M., & Wheeler, J. C. 2005, BAAS, 37, 1431 [ Links ]
Quimby, R. M., et al. 2011, Nature, 474, 487 [ Links ]
Rau, A., et al. 2009, PASP, 121, 1334 [ Links ]
Smith, N., Chornock, R., Li, W., Ganeshalingam, M., Silverman, J. M., Foley, R. J., Filippenko, A. V., & Barth, A. J. 2008, ApJ, 686, 467 [ Links ]
Smith, N., Chornock, R., Silverman, J. M., Filippenko, A. V., & Foley, R. J. 2010, ApJ, 709, 856 [ Links ]
Smith, N., et al. 2007, ApJ, 666, 1116 [ Links ]
Smith, N., & McCray, R. 2007, ApJ, 671, L17 [ Links ]
Staff, J. E., Ouyed, R., & Jaikumar, P. 2006, ApJL, 645, L145 [ Links ]
Vogt, C., Rapp, R., & Ouyed, R. 2004, Nuclear Phys. A, 735, 543 [ Links ]
Weidemann, V. 1977, A & A, 59, 411 [ Links ]
Wenger, S., Ament, M., Steffen, W., Koning, N., Weiskopf, D., & Magnor, M. 2012, Computing in Science and Engineering, 14, 78 [ Links ]
Witten, E. 1984, Phys. Rev. D, 30, 272 [ Links ]
Woosley, S. E. 2010, ApJ, 719, L204 [ Links ]
Woosley, S. E., Blinnikov, S., & Heger, A. 2007, Nature, 450, 390 [ Links ]
Xu, R. X., Zhang, B., & Qiao, G. J. 2001, Astroparticle Phys., 15, 101 [ Links ]
Young, D. R., et al. 2010, A & A, 512, A70 [ Links ]
Yungelson, L. R., van den Heuvel, E. P. J., Vink, J. S., Portegies Zwart, S. F., & de Koter, A. 2008, A & A, 477, 223 [ Links ]