SciELO - Scientific Electronic Library Online

 
 número129Escarificación de endocarpos del jobo (Spondias mombin, Anacardiaceae) debido al paso por el tracto digestivo de monos aulladores de manto (Alouatta palliata mexicana): un vistazo microscópicoMicromicetos asexuales hallados sobre hojas de Quercus spp. (Fagaceae) en Huixquilucan, Estado de México, México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Acta botánica mexicana

versión On-line ISSN 2448-7589versión impresa ISSN 0187-7151

Act. Bot. Mex  no.129 Pátzcuaro  2022  Epub 31-Oct-2022

https://doi.org/10.21829/abm129.2022.2039 

Research articles

Xerocomellus carmeniae (Boletales, Basidiomycota), a new fungus from northeastern Mexico

Xerocomellus carmeniae (Boletales, Basidiomycota), un nuevo hongo del noreste de México

Fortunato Garza-Ocañas1 
http://orcid.org/0000-0003-3862-8875

Jesús García Jiménez2 
http://orcid.org/0000-0001-9290-1460

Gonzalo Guevara-Guerrero2 
http://orcid.org/0000-0002-2707-4531

César Ramiro Martínez-González3 
http://orcid.org/0000-0002-0256-0840

Olivia Ayala-Vásquez4 
http://orcid.org/0000-0002-8970-9571

Javier Isaac de la Fuente4  5 
http://orcid.org/0000-0003-4667-1574

1Universidad Autónoma de Nuevo León, Campus Linares, Facultad de Ciencias Forestales, Carretera Nacional km 145, Apdo. postal 41, 67700 Linares, Nuevo León, Mexico.

2Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Victoria, Boulevard Emilio Portes Gil núm. 1301, 87010 Cd. Victoria, Tamaulipas, Mexico.

3Universidad Nacional Autónoma de México, Departamento de Biología, Facultad de Ciencias, Ciudad Universitaria, 04510 Cd. Mx., Mexico.

4Colegio de Postgraduados, km 36.5, 56230 Montecillo, Texcoco, Estado de México, Mexico.


Abstract:

Background and Aims:

Xerocomellus is a genus of the Boletaceae family, characterized by the small to medium, boletoid to gastroid basidiomata, usually with areolate pileus, and smooth to ornamented basidiospores. So far only two species are known from Mexico. The aim of this study is to describe a new species of Xerocomellus, based on morphological, molecular and ecological data.

Methods:

Sampling of studied specimens was carried out in Nuevo León state, northeastern Mexico (2009 and 2016). Classic protocols for macrofungi were followed. Hand cut sections of specimens were made and mounted in KOH and Melzer reagent to observe microstructures. The identification of the putative host tree was made in the botanical herbarium CFNL of the Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León; the type of forest was identified according to field observations and satellite images. DNA was extracted from three different collections. The ITS region and the gene LSU were obtained and analyzed. The material was deposited in the mycological collections of the herbaria “José Castillo Tovar” (ITCV) of the Instituto Tecnológico de Ciudad Victoria and CFNL.

Key results:

Xerocomellus carmeniae differs from other Xerocomellus species by the following combination of characteristics: boletoid basidiomata, reddish areolate pileus, yellowish stipe, and basidiospores of 10.5-13.6 × 5.7-7.8 µm, elongate, sometimes truncate.

Conclusions:

Xerocomellus carmeniae is the third species of this genus known from Mexico and is putatively associated to Quercus cambyi. Some specimens show an aberrant form, but more studies are recommended to evaluate a possible transition to a secotioid form.

Key words: Agaricomycetes; boletes; fungi; new species; Quercus; symbiont fungi

Resumen:

Antecedentes y Objetivos:

Xerocomellus es un género de la familia Boletaceae, caracterizado por el basidioma pequeño a mediano, boletoide o gastroide, usualmente con píleo areolado y esporas lisas u ornamentadas. Hasta ahora se conocen dos especies de México. El objetivo de este estudio es describir una nueva especie de Xerocomellus basada en datos morfológicos, moleculares y ecológicos.

Métodos:

El muestreo de los especímenes estudiados se realizó en el estado de Nuevo León, noreste de México (2009 y 2016). Se siguieron los protocolos clásicos para macro hongos. Se hicieron cortes manuales de especímenes y se montaron en KOH y reactivo de Melzer para observar microestructuras. La identificación del hospedero putativo se realizó en el herbario CFNL de la Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León; el tipo de bosque se identificó de acuerdo con observaciones de campo e imágenes de satélite. Se extrajo ADN de tres diferentes colecciones. Se obtuvieron y analizaron la región ITS y el gen LSU. El material se depositó en las colecciones micológicas de los herbarios “José Castillo Tovar” (ITCV) del Instituto Tecnológico de Ciudad Victoria y CFNL.

Resultados clave:

Xerocomellus carmena se diferencia de otros Xerocomellus por la siguiente combinación de características: basidiomas boletoides, píleo areolados rojizo, estípite amarillentos y basidiosporas de 10.5-13.6 × 5.7-7.8 μm, elongadas, a veces truncadas.

Conclusiones:

Xerocomellus carmeniae es la tercera especie de este género conocida de México y está putativamente asociada con Quercus canbyi. Algunos especímenes mostraron una forma aberrante, pero se recomiendan más estudios para evaluar una posible transición a una forma secotioide.

Palabras clave: Agaricomycetes; boletes; especie nueva; hongos; hongos simbiontes; Quercus

Introduction

Xerocomellus Šutara is a genus in the family Boletaceae characterized by boletoid, hypogeous to secotioid basidiomata, usually with small fruit body, sometimes cracked pileus, and smooth to ornamented spores; some species have hypogeous forms with ridged to globose-equinulate spores (Šutara, 2008; Smith et al., 2018; Frank et al., 2020). As other boletes, the species of Xerocomellus form ectomycorrhizas with members of Fagaceae and Pinaceae (Rinaldi et al., 2008; Tedersoo et al., 2010; Wu et al., 2016; Frank et al., 2020). The genus was segregated from Xerocomus Quél. by Šutara (2008), mainly by the basidiospore ornamentation and pileipellis arrangement. Recent phylogenetic studies place Xerocomellus close to Hortiboletus Simonini, Vizzini & Gelardi, in the clade 13 of the Boletoideae (Wu et al., 2016). According to recent research (Frank et al., 2020; Farid et al., 2021) and Index Fungorum (2022) information on the genus, 25 species are recognized worldwide.

Northern Mexico is known for its bolete diversity, with more than 150 species reported from the states of Tamaulipas, Nuevo León, and Coahuila (García-Jiménez and Garza-Ocañas, 2001; García-Jiménez, 2014). So far, no species of Xerocomellus have been described in Mexico using molecular approaches. Only two species are known from this country: Xerocomellus chyrsenteron (Bull.) Šutara and X. truncatus (Singer, Snell & E.A. Dick) Klofac (Saldivar et al., 2021). Due to the diversity of hosts, forest ecosystems and elevations, more fungal species are expected to be found and which need to be described. During mycological exploration in the state of Nuevo León, some noteworthy boletes were found, characterized by the red areolate pileus and boletoid basidiomata. The aim of this study is to describe a new species of Xerocomellus, based on morphological, molecular and ecological data.

Material and Methods

Sampling

The mycological explorations were carried out in the state of Nuevo León, Mexico, during July-August 2009 and July-August 2016 (Fig. 1). The vegetation in the sampling zones is a mixed Pinus-Quercus forest. The identification of the putative host tree was made in the herbarium CFNL, of the Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León, Mexico. The type of forest was identified according to field observations and satellite images. Methods for collecting, sampling and describing fungi followed Frank et al. (2020).

Figure 1: Distribution of Xerocomellus carmeniae Garza-Ocañas, J. García & de la Fuente. 

Hand cut sections were made from dried specimens and mounted in water, KOH 5% and Melzer´s solution for microscopic description. The Methuen Handbook of Colour was used for color terminology (Kornerup and Wanscher, 1978). At least 30 microscopic structures (basidiospores, basidia and pileipellis) were measured with an optical microscope (Motic BA310, San Antonio, USA). The Q ratio, average length (L) and average width (W) were obtained for basidiospores according to Frank et al. (2020). The scanning electron microscope (JEOL JSM-6010PLUS, Tokyo, Japan) of El Colegio de la Frontera Sur (ECOSUR, Chetumal, Mexico) was used to observe basidiospores.

All the specimens are deposited in the mycological collections of the herbaria “José Castillo Tovar” (ITCV) of the Instituto Tecnológico de Ciudad Victoria and CFNL.

Amplification and sequencing

Total DNA was extracted from dried herbarium specimens using a modification of the Murray and Thompson (1980) protocol. The PCR amplification, based on Mullis and Faloona (1987), included 35 cycles with an annealing temperature of 54 ºC, and was carried out with the ITS5 and ITS4 primers (White et al., 1990; Gardes and Bruns, 1993) for the ITS nrDNA region, and the LR0R and LR5 primers (Vilgalys and Hester, 1990; Cubeta et al., 1991) for the 28S nrDNA region (LSU).

The amplicons were verified by agarose gel electrophoresis. The gels were run for 1 h at 95 V cm⁻³ in 1.5% agarose and 1× TAE buffer (Tris Acetate-EDTA). The gel was stained with GelRed (Biotium, USA) and the bands were visualized in an Infinity 3000 transilluminator (Vilber LourmatTM, Marne-la-Vallée, France). The amplified products were purified with the ExoSAP Purification kit (Affymetrix Inc., Santa Clara, USA), following the manufacturer’s instructions. They were quantified and prepared for the sequence reaction using a BigDye Terminator v. 3.1 (Applied Biosystems, Waltham, USA).

These products were sequenced in both directions with an Applied Biosystems model 3730XL (Applied BioSystems, Waltham, USA), at the Instituto de Biología of the Universidad Nacional Autónoma de México (UNAM). The sequences obtained were compared with the original chromatograms to detect and correct possible reading errors.

Phylogenetic analyses

In order to study phylogenetic relationships, our newly produced sequences of three individuals of Xerocomellus were added to reference sequences of ITS and LSU (Table 1) deposited in the NCBI database (GenBank, 2022). Each gene region was independently aligned using the online version of MAFFT v. 7 (Katoh et al., 2002, 2017; Katoh and Standley, 2013). Alignments were reviewed in PhyDE v. 10.0 (Müller et al., 2005), followed by minor manual adjustments to ensure character homology among taxa. The matrices were formed for ITS by 39 taxa (690 characters) and LSU by 23 taxa (592 characters). Hortiboletus was used as outgroup. The aligned matrices were concatenated into a single matrix (39 taxa, 1282 characters) with Mesquite v. 3.2 (Maddison and Maddison, 2021). Phylogenetic inferences were estimated with maximum likelihood in RAxML v. 8.2.10 (Stamatakis, 2014) with a GTR + G model of nucleotide substitution. To assess branch support, 1000 rapid bootstrap replicates were run with the GTRCAT model. For Bayesian posterior probability, the best evolutionary model for alignment was sought using PartitionFinder v. 2 (Lanfear et al., 2014, 2017; Frandsen et al., 2015).

Table 1: GenBank accession numbers corresponding to the sequences used in the phylogenetic analyses. In bold the accessions of the new species generated for this study. 

Species name Isolate/Voucher/strain Locality GenBank Accessions
ITS nrLSU
Xerocomellus aff. chrysenteron (Bull.) Šutara JLF5684 USA MH168533 -----
Xerocomellus amylosporus (A.H. Sm.) J.L. Frank & N. Siegel JLF3012 USA KM213635 KU144742
Xerocomellus atropurpureus J.L. Frank, N. Siegel & C.F. Schwar JLF3620 USA KU144749 KU144750
Xerocomellus atropurpureus J.L. Frank, N. Siegel & C.F. Schwar JLF4664 USA KY659589 -----
Xerocomellus atropurpureus J.L. Frank, N. Siegel & C.F. Schwar NS120712 USA KM213641 KM213642
Xerocomellus atropurpureus J.L. Frank, N. Siegel & C.F. Schwar JLF2795 USA KM213638 KM213639
Xerocomellus behrii (Harkn.) Castellano, M.E. Sm. & J.L. Frank OSC Trappel 17620 ----- KJ882290 -----
Xerocomellus bolinii J.A. Bolin, A.E. Bessette, A.R. Bessette, L.V. Kudzma, J.L. Frank & A. Farid JAB 133 USA MW675729 MW662582
Xerocomellus bolinii J.A. Bolin, A.E. Bessette, A.R. Bessette, L.V. Kudzma, J.L. Frank & A. Farid JAB 95 USA MW675735 MW662589
Xerocomellus bolinii J.A. Bolin, A.E. Bessette, A.R. Bessette, L.V. Kudzma, J.L. Frank & A. Farid JAB 110 USA MW675735 MW662580
Xerocomellus carmeniae Garza-Ocañas, J. García & de la Fuente 18219 Type ITCV Mexico ON392096 ON254917
Xerocomellus carmeniae Garza-Ocañas, J. García & de la Fuente 5193 ITCV Mexico ON392097 ON254918
Xerocomellus carmeniae Garza-Ocañas, J. García & de la Fuente 5192 ITCV Mexico ON392098 ON254919
Xerocomellus cisalpinus (Simonini, H. Ladurner & Peintner) Klofac KR-M-0044831 Germany MT006036 -----
Xerocomellus cisalpinus (Simonini, H. Ladurner & Peintner) Klofac LUGO:ECC19102906 Spain MW376718 -----
Xerocomellus diffractus (Simonini, H. Ladurner & Peintner) Klofac JLF3554 USA KU144769 KU144770
Xerocomellus diffractus (Simonini, H. Ladurner & Peintner) Klofac JLF5745 USA MH168534 -----
Xerocomellus diffractus (Simonini, H. Ladurner & Peintner) Klofac NS120612 USA KM213650 KM213651
Xerocomellus dryophilus (Thiers) N. Siegel, C.F. Schwarz & J.L. Frank CFS3Nov11-2 USA KM213645 KX534074
Xerocomellus dryophilus (Thiers) N. Siegel, C.F. Schwarz & J.L. Frank JLF4134 USA KX534076 KY659593
Xerocomellus mcmurphyi (Zeller & C.W. Dodge) Castellano, Saylor, M.E. Sm. & J.L. Frank OSCMES 282 ----- KJ882289 KJ882292
Xerocomellus mendocinensis (Thiers) N. Siegel, C.F. Schwarz & J.L. Frank JLF2275 USA KM213653 KM213654
Xerocomellus mendocinensis (Thiers) N. Siegel, C.F. Schwarz & J.L. Frank JLF3558 USA KU144785 KU144786
Xerocomellus mendocinensis (Thiers) N. Siegel, C.F. Schwarz & J.L. Frank CFS 1Nov11 USA KM213656 KM213657
Xerocomellus mendocinensis (Thiers) N. Siegel, C.F. Schwarz & J.L. Frank HDT 18392 USA KM213655 -----
Xerocomellus poederi G. Moreno, Heykoop, Esteve-Rav., P. Alvarado & Traba AH 44050 Type ----- NR155971 -----
Xerocomellus pruinatus (Fr. & Hök) Šutara G.M. 2015-09-23.4 Luxembourg MW603181 MW603181
Xerocomellus rainisie (Bessette & O.K. Mill.) N. Siegel, C.F. Schwarz & J.L. Frank OKM25915 USA KM213664 -----
Xerocomellus ripariellus (Redeuilh) Šutara 301 Spain MN685108 -----
Xerocomellus salicicola C.F. Schwarz, N. Siegel & J.L. Frank CS-5Mar2014-1 ----- KU144791 KU144792
Xerocomellus salicicola C.F. Schwarz, N. Siegel & J.L. Frank UCSC1028 ----- KU144793 KU144794
Xerocomellus sarnarii Simonini, Vizzini & U. Eberh. ML900101XE Cyprus MH011930 MH011930
Xerocomus truncatus (Singer, Snell & E.A. Dick) Klofac HDT22426 USA KU144796 -----
Xerocomus truncatus (Singer, Snell & E.A. Dick) Klofac NY13857 USA KU144795 -----
Xerocomellus zelleri (Murrill) Klofac JLF2977 USA KM213666 -----
Xerocomellus zelleri (Murrill) Klofac Murrill Type USA KU144803 -----
Hortiboletus campestris (A.H. Sm. & Thiers) Biketova & Wasser DD614 USA MH168538 -----
Hortiboletus cf. rubellus (Krombh.) Simonini, Vizzini & Gelardi JLF3093 USA KU144805 -----

Phylogenetic analyses were performed using MrBayes v. 3.2.6 x64 (Huelsenbeck and Ronquist, 2001). The information block for the matrix included two simultaneous runs, four Montecarlo chains, temperature set to 0.2 and sampling 10 million generations (standard deviation ≤0.1) with trees sampled every 1000 generations. The first 25% of samples were discarded as burn-in, and stationarity was checked in Tracer v. 1.6 (Rambaut et al., 2014). Trees were visualized and optimized in FigTree v. 1.4.4 (Rambaut, 2014). The phylogenetic tree is available at TreeBASE (accession number: TB2:S16457).

Results

Molecular analyses

The two simultaneous Bayesian runs continued until the convergence parameters were met, and the standard deviation fell below 0.001 after 4.5 million generations (Fig. 2). No significant changes in tree topology trace or cumulative split frequencies of selected nodes were observed after about 0.25 million generations, which were discarded as 25% burn-in. The analysis produced a phylogenetic tree where the new species is shown as a monophyletic clade with strong statistical support (1 Bayesian Posterior Probability (PP) and 100% bootstrap proportion (BP) for Maximum Likelihood).

Figure 2: Bayesian inference phylogram of ITS-LSU sequence data. Posterior probability (left of slash) from Bayesian analysis and Bootstrap support 

Taxonomy

Basidiomycota

Agaricomycetes

Boletales

Boletaceae

Xerocomellus carmeniae Garza-Ocañas, J. García & de la Fuente sp. nov. Figs. 3, 4.

Figure 3: Xerocomellus carmeniae Garza-Ocañas, J. García & de la Fuente (holotype). A-B. details of the basidiomata; C. details of the tubes; D. context; E. basidiomata and details of the pileus. Scale: 10 mm. 

Figure 4: Xerocomellus carmeniae Garza-Ocañas, J. García & de la Fuente (holotype) A-B. basidiospores; C-D. elements of pileipellis. Scale=A:10 µm; B: 5 µm; C-D: 10 µm. 

TYPE: MEXICO. Nuevo León, municipality Iturbide, Puerto Pastores, Pinus-Quercus forest, under Q. canbyi, 16.VII.2016, J. García 18219 (holotype: ITCV!, isotype: CFNL!). Mycobank: MB843147. Genbank: ITS: ON392096; LSU: ON254917.

Xerocomellus carmeniae is characterized by the following combination of features: boletoid basidioma, reddish areolate pileus, context yellowish, staining blue when cut, truncate, elongate to ellipsoid basidiospores, 10.5-13.6 × 5.7-7.8 µm.

sGene sequences ex-holotype. MF616521 (tef-1α), MF616525 (nLSU).

Basidiomata boletoid, sometimes with a poorly developed stipe; pileus 18-32 mm diameter, vivid red to deep red (11A8-11C8), light brown to brown (6D4-6E4) background pale yellow (4A6), slightly convex to flattened, margin irregular; context yellowish (4A8), bruising greyish green (28B5) to greyish blue (24D5) when young, unchanging when mature; tubes irregularly arranged, emarginated sometimes, yellowish (30A8) to greyish green (27E5), with angular to irregular pores, sometimes covered by a thin whitish layer near the stipe apex; stipe 13-34 × 0.5-10 mm, irregular and sinuous, pale brown (5D4) to pale yellow (4A7), with small reddish (11A8) scales, sometimes becoming pale brown (5D4) to grey brown (5D3) at the slender base; pileipellis 105-174 µm thick, composed of compacted interwoven chains of cylindrical to subglobose hyphae, 10-22 µm diameter, with erect and clavate to fusoid terminal cells, brownish to yellowish in KOH 5% and Melzer’s reagent, with granular intracellular content; hymenophoral trama slightly divergent, with cylindric and loosely interwoven hyphae, 2-6 µm in diameter, hyaline, thin-walled; basidia clavate to subclavate, 25-36 × 11-18 µm, hyaline, 4-spored, with sterigma projecting up to 3 µm long, thin-walled; hymenial cystidia not observed; basidiospores 10.5-13.6 × 5.7-7.8 µm (L=11.05, W=6.90, Q=1.60, N=30), truncate, elongate, brown in KOH and Meltzer, guttulate, sometimes truncate, smooth and thick-walled.

Habit and habitat: scattered in small groups, mixed Pinus-Quercus forest under Quercus canbyi Trel.

Distribution: only known from Nuevo León, Mexico.

Etymology: named carmeniae in honor of María del Carmen A. Medina Cortés, who found the specimens of this study.

Additional material examined: MEXICO. Nuevo León, municipality Iturbide, Puerto Pastores, 02.VIII.2009, F. Garza-Ocañas 5192 (CFNL), 5193 (CFNL).

Notes: the new species differs from other members of Xerocomellus such as Xerocomellus macmurphyi (Zeller & C.W. Dodge) Castellano, Saylor, M.E. Sm. & J.L. Frank and Xerocomellus behrii (Harkn.) Castellano, M.E. Sm. & J.L. Frank, due to the globose and hypogeous basidiomata with spinose basidiospores (Smith et al., 2018; Frank et al., 2020). It also differs from the boletoid to secotioid basidiomata of X. amylosporus (A.H. Sm.) J.L. Frank & N. Siegel, because it has amyloid and larger basidiospores (Frank et al., 2020).

Discussion

Boletaceae is one of the most common groups of fungi present in temperate forest (Ayala-Vásquez et al., 2022). Despite the usually developed boletoid, lamellate, epigeous fruit body, several species grow underground as false truffles or secotioid species (Thiers and Trappe, 1969; Binder and Hibbett, 2006; Smith et al., 2018). Most of them form ectomycorrhizal associations with angiosperms and gymnosperms (Hasselquist et al., 2011; Wu et al., 2016). The boletes are one of the mayor groups of fungi present in northeastern Mexican temperate forest with about 150 described species (García-Jiménez, 2014). More species are being described from the Mexican temperate zone, indicating the great species richness in Mexico (Ayala-Vásquez et al., 2018).

The genus Xerocomellus shows typically epigeous boletoid taxa; nevertheless, few hypogeous and secotioid species are known (Smith et al., 2018; Frank et al., 2020). The most remarkable features of the new species are the boletoid basidiomata, the reddish pileus, and the truncate basidiospores. Interestingly, Xerocomellus carmeniae is phylogenetically closer to hypogeous species such as Xerocomellus macmurphyi and Xerocomellus behrii, than to secotioid species such as Xerocomellus amylosporus or with truncate spores such as Xerocomellus mendocinensis (Thiers) N. Siegel, C.F. Schwarz & J.L. Frank (Frank et al., 2020). Despite Xerocomellus carmeniae has a boletoid basidiomata, some collections show an aberrant form that could represent a transition to a secotioid form (Fig. 5). Even when the hymenium is not completely enclosed within a persistent peridium, the absence of hymenial cystidia and the basidiospores without hylar depression could indicate a possible loss of the capability for active dispersal. These characteristics are found in the truly secotioid boletes (Thiers and Trappe, 1969; Thiers, 1984). Other Xerocomellus species such as X. amylosporus and X. atropurpureus J. L. Frank, N. Siegel & C.F. Schwarz also have a gastroid morphological variation (Frank et al., 2020). More collections are needed to clarify the possible secotioid transition of this new species.

Figure 5: Xerocomellus carmeniae Garza-Ocañas, J. García & de la Fuente (F. Garza-Ocañas 5192) showing an aberrant basidioma. Scale=10 mm. 

The sequestrate Boletales are still poorly studied when compared with their epigeous relatives. In Mexico, only some species of Octaviania Vittad., Melanogaster Corda and Rhizopogon Fr. (Trappe and Guzmán, 1971; Cázares et al., 1992; 2008) have been described. Considering Mexico as a diversification center of the genera Quercus L. and Pinus L, trees which form association with several species of mycorrhizal fungi (Trappe et al., 2009), more studies about the Mexican symbiotic fungi are recommended.

Acknowledgements

JIF thanks El Colegio de la Frontera Sur (ECOSUR-Chetumal) for providing access to the scanning electron microscope. Guevara thanks the Tecnológico Nacional de México and Consejo Nacional de Ciencia y Tecnología (CONACyT) for research support. Garza Ocañas thanks the Universidad Autónoma de Nuevo León for the field research support. We also thank the editors and reviewers for their kind comments on our document.

Literature cited

Ayala-Vásquez, O., J. García-Jiménez, E. Aguirre-Acosta, R. Castro-Rivera, R. E. Ángeles-Argáiz, A. E. Saldivar and R. Garibay-Orijel. 2022. Hemiaustroboletus, a new genus in the subfamily Austroboletoideae (Boletaceae, Boletales). Mycokeys 88: 55-78. DOI: https://doi.org/10.3897/mycokeys.88.73951 [ Links ]

Ayala-Vásquez, O. , R. Valenzuela, E. Aguirre-Acosta , T. Raymundo and J. García-Jiménez . 2018. Species of Boletaceae (Boletales, Basidiomycota) with ornamented spores from temperate forests at the state of Oaxaca, Mexico. Studies in Fungi 3(1): 271-292. DOI: https://doi.org/10.5943/sif/3/1/28 [ Links ]

Binder, M. and D. S. Hibbett. 2006. Molecular systematics and biological diversification of Boletales. Mycologia 98(6): 971-981. DOI: https://doi.org/10.3852/mycologia.98.6.971 [ Links ]

Cázares, E., G. Guevara, J. García and J. M. Trappe. 2008. Melanogaster minisporus sp. nov., a new sequestrate member of the Boletales from Mexico. Revista Mexicana de Micología 28: 67-69. [ Links ]

Cázares, E. , J. García , J. Castillo and J. M. Trappe . 1992. Hypogeous Fungi from Northern Mexico. Mycologia 84(3): 341-359. DOI: https://doi.org/10.2307/3760186 [ Links ]

Cubeta, M. A., E. Echandi, T. Abernethy and R. Vilgalys. 1991. Characterization of anastomosis groups of binucleate Rhizoctonia species using restriction analysis of an amplified ribosomal RNA gene. Phytopathology 81(11): 1395-1400. DOI: https://doi.org/10.1094/Phyto-81-1395 [ Links ]

Farid, A., A. E. Bessette, A. R. Bessette, J. A. Bolin, L. V. Kudzma, A. R. Franck and J. R. Garey. 2021. Investigations in the boletes (Boletaceae) of southeastern USA: four novel species and three novel combinations. Mycosphere 12(1): 1038-1076. DOI: https://doi.org/10.5943/mycosphere/12/1/12 [ Links ]

Frandsen, P. B., B. Calcott, C. Mayer and R. Lanfear. 2015. Automatic selection of partitioning schemes for phylogenetic analyses using iterative k-means clustering of site rates. BMC Evolutionary Biology 15(1): 1-17. DOI: https://doi.org/10.1186/s12862-015-0283-7 [ Links ]

Frank, J. L., N. Siegel, C. F. Schwarz, B. Araki and E. C. Vellinga. 2020. Xerocomellus (Boletaceae) in western North America. Fungal Systematic and Evolution 6: 265-288. DOI: https://doi.org/10.3114/fuse.2020.06.13 [ Links ]

García-Jiménez, J. 2014. Diversidad de macromicetos en el estado de Tamaulipas, México. Tesis de doctorado. Facultad de Ciencias Forestales, Campus Linares, Universidad Autónoma de Nuevo León. Linares, México. 264 pp. [ Links ]

García-Jiménez, J. and F. Garza-Ocañas. 2001. Conocimiento de los hongos de la familia Boletaceae de México. Ciencia UANL 4(3): 336-343. [ Links ]

Gardes, M. and T. D. Bruns. 1993. ITS primers with enhanced specificity for Basidiomycetes -application to the identification of mycorrhizae and rusts. Molecular Ecology 2(2): 113-118. DOI: https://doi.org/10.1111/j.1365-294X.1993.tb00005.x [ Links ]

GenBank. 2022. National Center for Biotechnology Information. National Library of Medicine (NIH). https://www.ncbi.nlm.nih.gov/genbank/ (consulted May, 2022). [ Links ]

Hasselquist, N. J., G. W. Douhan and M. F. Allen. 2011. First report of the ectomycorrhizal status of boletes on the Northern Yucatan Peninsula, Mexico determined using isotopic methods. Mycorrhiza 21(6): 456-471. DOI: https://doi.org/10.1007/s00572-010-0355-x [ Links ]

Huelsenbeck, J. P. and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8): 754-755. DOI: https://doi.org/10.1093/bioinformatics/17.8.754 [ Links ]

Index Fungorum. 2022. Index Fungorum database. http://www.indexfungorum.org/Names/Names.asp (consulted May, 2022). [ Links ]

Katoh, K. and D. M. Standley. 2013. MAFFT Multiple Sequence Alignment Software version 7: improvements in performance and usability. Molecular Biology and Evolution 30(4): 772-780. DOI: https://doi.org/10.1093/molbev/mst010 [ Links ]

Katoh, K. , J. Rozewicki and K. D. Yamada. 2017. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160-1166. DOI: https://doi.org/10.1093/bib/bbx108 [ Links ]

Katoh, K. , K. Misawa, K. Kuma and T. Miyata. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30(14): 3059-3066. DOI: https://doi.org/10.1093/nar/gkf436 [ Links ]

Kornerup, A. and H. Wanscher. 1978. Methuen Handbook of Colour, 7th Ed. Eyre Metheun. London, UK. 227 pp. [ Links ]

Lanfear, R., B. Calcott , D. Kainer, C. Mayer and A. Stamatakis. 2014. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evolutionary Biology 14: 1-14(1). DOI: https://doi.org/10.1186/1471-2148-14-82 [ Links ]

Lanfear, R. , P. B. Frandsen, A. M. Wright, T. Senfeld and B. Calcott . 2017. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34(3): 772-773. DOI: https://doi.org/10.1093/molbev/msw260 [ Links ]

Maddison, W. P. and Maddison D. R. 2021. Mesquite: a modular system for evolutionary analysis. Version 3.70. http://mesquiteproject.org (consulted May, 2022) [ Links ]

Müller, K., D. Quandt, J. Müller and C. Neinhuis. 2005. PhyDE®-Phylogenetic data editor. Program distributed by the authors, ver. 10.0. https://www.phyde.de (consulted March, 2021). [ Links ]

Mullis, K. B. and F. A. Faloona. 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology 155: 335-350. DOI: https://doi.org/10.1016/0076-6879(87)55023-6 [ Links ]

Murray, M. G. and W. F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8(19): 4321-4326. DOI: https://doi.org/10.1093/nar/8.19.4321 [ Links ]

Rambaut, A. 2014. FigTree ver. 1.4.2. Available at: http://tree.bio.ed.ac.uk/software/figtree/ (consulted March, 2021). [ Links ]

Rambaut, A., M. A. Suchard, D. Xie and A. J. Drummond. 2014. Tracer ver. 1.6. http://beast.bio.ed.ac.uk/Tracer (consulted March, 2021). [ Links ]

Rinaldi, A. C., O. Comandini and T. W. Kuyper. 2008. Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Diversity 33: 1-45. [ Links ]

Saldivar, Á. E., J. García-Jiménez , M. J. Herrera-Fonseca and O. Rodríguez-Alcántara. 2021. Listado actualizado y nuevos registros de Boletaceae (Fungi, Basidiomycota, Boletales) en Jalisco, México. Polibotánica 52: 25-49. DOI: https://doi.org/10.18387/polibotanica.52.3 [ Links ]

Smith, M. E., M. A. Castellano and J. L. Frank. 2018. Hymenogaster macmurphyi and Splanchnomyces behrii are sequestrate species of Xerocomellus from the western United States. Mycologia 110(3): 605-617. DOI: https://doi.org/10.1080/00275514.2018.1465299 [ Links ]

Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313. DOI: https://doi.org/10.1093/bioinformatics/btu033 [ Links ]

Šutara, J. 2008. Xerocomus s.l. in the light of the present state of knowledge. Czech Mycology 60(1): 29-62. DOI: https://doi.org/10.33585/cmy.60104 [ Links ]

Tedersoo, L., T. W. May and M. E. Smith. 2010. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20: 217-263. DOI: https://doi.org/10.1007/s00572-009-0274-x [ Links ]

Thiers, H. D. 1984. The secotioid syndrome. Mycologia 76(1): 1-8. DOI: https://doi.org/10.1080/00275514.1984.12023803 [ Links ]

Thiers, H. D. and J. M. Trappe . 1969. Studies in the genus Gastroboletus. Brittonia 21: 244-254. DOI: https://doi.org/10.2307/2805576 [ Links ]

Trappe, J. M. and G. Guzmán. 1971. Notes on some hypogeous fungi from Mexico. Mycologia 63(2): 317-332. DOI: https://doi.org/10.2307/3757764 [ Links ]

Trappe, J. M. , R. Molina, D. L. Luoma, E. Cázares, D. Pilz, J. E. Smith, M. A. Castellano , S. L. Miller and M. J. Trappe. 2009. Diversity, Ecology, and Conservation of Truffle Fungi in Forests of the Pacific Northwest. General Technical Reports PNW-GTR-772-Department of Agriculture, Forest Service, Pacific Northwest Research Station. Portland, USA. 194 pp. [ Links ]

Vilgalys, R. and M. Hester. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 72(8): 4238-4246. DOI: https://doi.org/10.1128/jb.172.8.4238-4246.1990 [ Links ]

White, T. J., T. D. Bruns, S. Lee and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M. A., D. H. Gelfand, J. Sninsky and T. J. White (eds.). PCR protocols: a guide to methods and applications. Academic Press. San Diego, USA. Pp. 315-322. [ Links ]

Wu, G., Y. C. Lee, X. T. Zhu, K. Zhao, L. H. Han, Y. Y. Cui, F. Li, J. O. Xu and Z. L. Yang. 2016. One hundred noteworthy boletes from China. Fungal Diversity 81: 25-188. DOI: https://doi.org/10.1007/s13225-016-0375-8 [ Links ]

Author contributions

1FGO and JGJ collected the material. JIF, CRMG, and OAV wrote the manuscript. CRMG made the molecular analyses. GGG, JIF, JGJ and OAV described the species. All authors contributed to the manuscript.

Funding

2This project was supported by the Tecnológico Nacional de México-Instituto Tecnológico de Ciudad Victoria.

Received: March 02, 2022; Revised: April 18, 2022; Accepted: June 08, 2022; Published: June 21, 2022

5Author for correspondence: jdelafuenteitcv@gmail.com

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License