SciELO - Scientific Electronic Library Online

 
vol.43 número4Producción y acumulación de materia seca en fresa (Fragaria × ananassa Duch.) con sustratos tratados con metam sodio o micorrizasEstimación de la fracción de cobertura de la vegetación en maíz (Zea mays) mediante imágenes digitales tomadas por un vehículo aéreo no tripulado (UAV) índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista fitotecnia mexicana

versión impresa ISSN 0187-7380

Rev. fitotec. mex vol.43 no.4 Chapingo oct./dic. 2020  Epub 14-Ago-2023

https://doi.org/10.35196/rfm.2020.4.389 

Scientific articles

Ecological niche of semidomesticated populations of Capsicum pubescens Ruiz & Pav. based on accessions from Veracruz, Mexico

Nicho ecológico de poblaciones semidomesticadas de Capsicum pubescens Ruiz & Pav. con base en accesiones de Veracruz, México

Ricardo Serna-Lagunes1 

Pablo Andrés-Meza1  * 

Otto R. Leyva-Ovalle1 

José L. Del Rosario-Arellano1 

Miguel Merino-Valdes1 

Joaquín Murguía-González1 

María Elena Galindo-Tovar1 

Jaime Mejía-Carranza2 

Mauro Sierra-Macías3 

Alejandro Espinosa-Calderón4 

Margarita Tadeo-Robledo5 

Juan Del Rosario-Arellano1 

1Universidad Veracruzana, Facultad de Ciencias Biológicas y Agropecuarias, Amatlán de los Reyes, Veracruz, México.

2Universidad Autónoma del Estado de México, Centro universitario Tenancingo, Tenancingo, Estado de México, México.

3Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Cotaxtla, Medellín de Bravo, Veracruz, México.

4INIFAP, Campo Experimental Valle de México, Texcoco, Estado de México, México.

5Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán, Cuautitlán Izcalli, Estado de México, México.


Summary

To be able to cultivate a wild species it is necessary to modify the genetic scheme resulting from natural selection processes to one adapted to humanmanaged conditions, it implies to detect geographic areas similar to those where the species originated. This study analyzes a model of potential geographic areas for Capsicum pubescens Ruiz & Pav adaptation, aiming to detect the appropriate ecological niche conditions in Mexico, and to describe the relationships between the environment and the morphological characteristics of the fruit. The recent maximum entropy modeling algorithm (MaxEnt) was used to model the niche of C. pubescens within an important region in Central Veracruz, Mexico. A total of 44 sites of presence and four bioclimatic variables were used to detect adequate niches for the species; also, a partial least squares regression analysis was performed by combining presence sites, bioclimatic variables and morphological characteristics of the fruit. A final suitability map was built identifying the areas suitable for C. pubescens growth. The contributions of the predictor variables to the model were annual rainfall (Bio12) 43.9 %, potassium layer (K) 23 %, altitude (DEM) 22.3 % and mean annual temperature (Bio1) 10.7 %, with a value of area under the curve of 99.7 %. The partial minimum squares corroborated the importance of covariables, which intervene in the expression of morphological characteristics of the fruit, helping to better understand the relationships between species and the environment. Areas not yet explored had occurrence values over 90 %, mainly in the mountainous regions of Chihuahua, Tamaulipas, Nuevo Leon, and the Santa Martha Sierra in southern Veracruz. A group of outstanding accessions was identified that could serve as the basis to initiate a breeding program for this species.

Index words: Capsicum pubescens; bioclimatic gradients; deductive approach; maximum entropy; plant species management; species distribution models

Resumen

Para cultivar una especie silvestre es necesario modificar el esquema genético resultante de los procesos de selección natural a uno adaptado a las condiciones manejadas por el hombre, e implica detectar áreas geográficas similares a aquellas donde se originó la especie. En este estudio se analiza un modelo de áreas geográficas potenciales para la adaptación de Capsicum pubescens Ruiz & Pav. con el objetivo de detectar las condiciones de nicho ecológico apropiado, determinar zonas potenciales en México y describir las relaciones entre el medio ambiente y las características morfológicas del fruto. Se utilizó el algoritmo reciente de máxima entropía (MaxEnt) para modelar el nicho de C. pubescens dentro de una región de importancia en el centro de Veracruz, México. Se utilizó un total de 44 sitios de presencia y cuatro variables bioclimáticas para detectar nichos adecuados para la especie; así mismo, se realizó un análisis de regresión por mínimos cuadrados parciales (PLS) combinando los sitios de presencia, variables bioclimáticas y características morfológicas del fruto. Se construyó un mapa final de idoneidad identificando las áreas adecuadas para el crecimiento de C. pubescens. Las contribuciones de las variables predictoras al modelo fueron preipitación anual (Bio12) 43.9 %, capa de potasio (K) 23 %, altitud (DEM) 22.3 % y temperatura media anual (Bio1) 10.7 %, con valor del área bajo la curva de 99.7 %. Los mínimos cuadrados parciales corroboraron la importancia de las covariables, que intervienen en la expresión de características morfológicas del fruto, ayudando a entender mejor las relaciones entre especies y el medio ambiente. Áreas aún no exploradas arrojaron probabilidades de ocurrencia mayores a 90 %, principalmente en las zonas montañosas de Chihuahua, Tamaulipas, Nuevo León y la Sierra de Santa Martha al sur del estado de Veracruz. Se identificó un grupo de accesiones sobresalientes que podrían servir como base para iniciar un programa de mejoramiento genético en esta especie.

Palabras clave: Capsicum pubescens; enfoque deductivo; gradientes bioclimáticos; manejo de especies de plantas; máxima entropía; modelos de distribución de especies

Introduction

Genetic resources of wild species related to cultivated plants constitute a gene pool that can help to solve agricultural problems (Hernández-Verdugo et al., 1998). To be able to cultivate a wild species it is necessary to modify the genetic scheme resulting from natural selection processes to one adapted to human-managed conditions (Hernández, 1985). Such manipulation allows man to adapt biological diversity to the needs of human society (Casas and Caballero, 1995) and is carried out through artificial selection, which in parallel also results in the evolutionary process of domestication (Mastretta-Yanes et al., 2019). For Gepts and Papa (2003), domestication is a continuous genetic selection process exercised by humans during the adaptation of plants and animals; this process generated morphological, physiological and genetic changes known as domestication syndrome (Gepts, 2005; Pickersgill, 2007).

Crops vary within and between species in their degrees of domestication. All known accessions of Capsicum pubescens have large fruits that have lost their dispersal mechanism, and this species occurs only in cultivation. The four other species of domesticated chili pepper each includes a range of variation from wild peppers, through cultivated peppers with somewhat larger fruits that are still capable of natural dispersal, to fully domesticated peppers with large fruits that remain firmly attached to the parent plant after maturity. Clement (1999) proposed two intermediate categories, incipiently domesticated and semidomesticated, to cover the spectrum of changes resulting from human interactions with species of tree fruits in Amazonia. Semidomesticated also fits the situation described by Casas et al. (1998) for Stenocereus stellatus, a giant cactus exploited and cultivated for its fruit in the Tehuacan Valley of Mexico. Casas (1998) considered that such changes in allele frequencies resulting from human selection constitute at least incipient domestication.

The Capsicum genus includes around 25 species belonging to the Solanaceae family (Meckelmann et al., 2015); of these, five species have been domesticated in at least two geographical regions of the new world (C. annuum and C. frutescens in Mesoamerica; C. baccatum, C. pubescens, and C. chinense in South America) (Loaiza-Figueroa et al., 1989; Pickersgill, 2007). Of the five domesticated species, C. pubescens Ruiz & Pav. is one of the main native species cultivated in the Andes (DeWitt and Bosland, 2009). Recent studies indicate that its cultivation and domestication began approximately 6000 years BC in the mid and high regions of Peru and Bolivia, at altitudes ranging from 1300 to 3000 masl (Ruiz and Pavon, 1799). C. pubescens is commonly known as “Rocoto” in Peru and “Locoto” in Bolivia (Meckelmann et al., 2015), and as “Manzano” and “Cera” in Mexico (Pérez-Grajales et al., 2004), due to its shape and appearance.

In Mexico, C. pubescens is distributed throughout the temperate areas of the states of Puebla, Michoacan, Mexico, Oaxaca and Veracruz. It is generally grown in production systems associated with fruit trees such as coffee (Coffea arabica L.), banana (Musa spp. L.), apple (Malus domestica Borkh.), peach (Prunus persica (L.) Batsch.), avocado (Persea americana Mill.), as well as some lumber species like cedar (Cedrus spp.) and ilite (Alnus acuminata Kunth.), among others. Capsicum pubescens is a perennial plant with purple flowers and hard-headed black seeds (Leyva-Ovalle et al., 2018). Its growth habit can be determined or undetermined, with trichomes in stems and leaves (Pérez-Grajales et al., 2004). Fruits vary greatly in size, shape and color (DeWitt and Bosland, 2009; Leyva-Ovalle et al., 2018; Rick, 1950; Yamamoto et al., 2013).

The fruits are rich in vitamins (A, C and B6), β-carotene, flavonoids, capsanthin, among others (Liu et al., 2013); also, the antioxidant properties of carotenoids protect against diverse heart diseases and cancer (Rodríguez-Burruezo et al., 2009). Likewise, the fruits can be dehydrated and used as a condiment in different dishes (Oboh et al., 2007). Because of this, the consumption of this fruit has grown in recent years as a consequence of increasing Latin American populations in the United States of America and Europe, as well as the increasing interest in functional foodstuffs (Pérez and Castro, 2008; Rodríguez-Burruezo et al., 2009).

There are few papers on the cultivation and distribution of C. pubescens, especially in Central America, where it has diversified. The influence of environmental, geographical, and soil conditions associated with its ecological niche is unknown; therefore, this study was carried out to elucidate the ecological niche conditions, to determine potential growing zones in Mexico, and to describe the possible relationships between the environment and the morphological characteristics of the fruit, as revealed by its current distribution.

MATERIALS AND METHODS

Study sites and data collection

The field work was carried out from October 2016 to March 2017 in 13 municipalities of the central region of the state of Veracruz, Mexico (Table 1, Figure 1). A total of 44 accessions of C. pubescens were obtained; the geographical coordinates of each site were registered to be used as occurrences to build the model.

Table 1 Accessions evaluated in this study. 

Id Accesion Municipality Origin Farmer name Altitude Latitude Longitude
1 MEXUVDC1 Coscomatepec Dos caminos Miguel Milian Ramos 1454 19.04419 -97.03058
2 MEXUVCAL1 Calcahualco Calcahualco Roberto Reyes M 1762 19.12128 -97.08269
3 MEXUVCAL2 Calcahualco Calcahualco Marcelino Espinoza de la Cruz 1680 19.12000 -97.07697
4 MEXUVCAL3 Calcahualco Calcahualco Marcelino Espinoza de la Cruz 1708 19.11708 -97.07697
5 MEXUVCV1 Calcahualco Cruz Verde Estanislao García 1927 19.13417 -97.10750
6 MEXUVCV2 Calcahualco Cruz Verde Remigia Ortiz Hernández 1923 19.13306 -97.10556
7 MEXUVTE1 Alpatlahuac Teacalco Manuela Martínez 2570 19.11417 -97.16556
8 MEXUVCO1 Alpatlahuac Cocalcingo Amalia Martínez 1990 19.09272 -97.10944
9 MEUVTL1 Alpatlahuac Tlatelpa David Dorantes 1799 19.11667 -97.08528
10 MEXUVTEPE1 Zongolica Tepetitlanapa José Ismael Vallejo Chimalgua 1523 18.64172 -97.01292
11 MEXUVTEX1 Texhuacan Texhuacan Matilde Tepole Xalamihua 2019 18.62193 -97.04673
12 MEXUVBP1 Mixtla de Altamirano Barrio Primero Evaristo Mayahua Flores 1678 18.60077 -96.99268
13 MEXUVLA1 Texhuacan La Aposteca Félix Cano Hernández 1431 18.61490 -97.00960
14 MEXUVCG1 Chocamán Colonia la Garita Anonymous 1332 19.00816 -97.02664
15 MEXUVBJ1 Coscomatepec Barranca de Jamapa María Antonia Tentle Morales 1365 19.09937 -97.03216
16 MEXUVTEP1 Huatusco Tepampa Francisco Huerta Ballona 1716 19.13524 -97.02220
17 MEXUVTEP2 Huatusco Tepampa Lázaro Huerta Rodríguez 1743 19.14219 -97.02421
18 MEXUVTEN1 Huatusco Tenejapa Anonymous 1404 19.13699 -97.00624
19 MEXUVTEN2 Huatusco Tenejapa María Luisa Sánchez Marinero 1373 19.13587 -97.00200
20 MEXUVTZ1 Tehuipango Tzacoala Primero Agustina Calihua Panzo 2090 18.53895 -97.07902
21 MEXUVTLA1 Tehuipango Tlalchichilco Pascuala Panso Chipahua 2369 18.54041 -97.05128
22 MEXUVTLA2 Tehuipango Tlalchichilco Pascuala Panso Chipahua 2369 18.54041 -97.05128
23 MEXUVTE2 Alpatlahuac Teacalco Alejandro Gómez 1825 19.10950 -97.09961
24 MEXUVTL2 Alpatlahuac Tlatelpa David Dorantes 1803 19.11697 -97.08578
25 MEXUVCO2 Alpatlahuac Cocaltzingo María Martínez 1968 19.09156 -97.10953
26 MEXUVBV1 Tepatlaxco Buena Vista Roberto Sánchez Hernández 1457 19.04153 -96.87311
27 MEXUVTE3 Alpatlahuac Teacalco Gerardo Torres 1825 19.10983 -97.09953
28 MEXUVCV3 Calcahualco Cruz Verde Anonymous 1934 19.13447 -97.10783
29 MEXUVCV4 Calcahualco Cruz Verde Vicente Espejel 1939 19.13614 -97.10978
30 MEXUVTER1 Calcahualco Terrero Rosalino 1913 19.13192 -97.10344
31 MEXUVCV5 Calcahualco Cruz Verde Remigia 1940 19.13611 -97.10975
32 MEXUVTER2 Calcahualco Terrero Diocleciana 1914 19.13194 -97.10333
33 MEXUVTER3 Calcahualco Terrero Serafina 1914 19.13192 -97.10339
34 MEXUVTET1 Coscomatepec Tetlaxco Cirilo Roque 1678 19.03711 -97.06344
35 MEXUVTET2 Coscomatepec Tetlaxco Juan Alejo Rosales 1683 19.03692 -97.06258
36 MEXUVHU1 Soledad Atzompa Huixtitla Leticia López Flores 2514 18.71276 -97.16385
37 MEXUVNE1 Camerino Z. Mendoza Necoxtla Margarita Pérez Flores 2045 18.77791 -97.15361
38 MEXUVCU1 Tehuipango Cuauyolotitla Gines Panzo Panzo 2387 18.51914 -97.06378
39 MEXUVCU2 Tehuipango Cuauyolotitla Gines Panzo Panzo 2408 18.51906 -97.06331
40 MEXUVTZ2 Tehuipango Tzacoala Primero Anonymous 2108 18.53874 -97.08197
41 MEXUVTEH1 Tehuipango Tehuipango Anonymous 2393 18.51947 -97.05444
42 MEXUVVH1 Tlaquilpa Vista Hermosa Lucía Clemente Sandoval 2592 18.59497 -97.12811
43 MEXUVCA1 Tlaquilpa Capillatixtla Jerónima Rosales 2410 18.61050 -97.11708
44 MEXUVDA1 Tlaquilpa Desviación Atempa Félix 2226 18.60092 -97.10422

Sources: Esri, HERE, Germin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstops OpenStreetMap contibutiors, and the GIS User Community.

Figure 1 Geographical distribution of 44 C. pubescens accessions from the central region of the state of Veracruz, Mexico in two contrasting zones, A and B. 

Characterization of C. pubescens fruits

Fifteen fruits at harvest maturity stage were collected from each site. Each of the fruits was morphologically characterized based on descriptors of the International Plant Genetic Resources Institute (IPGRI, 1995). Traits registered were length fruit (Lenfru) in cm, width fruit (Widfru) in cm, weight fruit (Wefru) in g, pedicel length (Lenped) in mm, wall thickness (Thfru) in mm, placental length (Lenpla) in cm, and number of seeds (Numsed).

A multivariate technique of partial least squares regression (PLSR) was applied, which allows describing the populations considering several morphological characteristics simultaneously, without failing to consider the relationship existing between them. This analysis is useful to predict a set of dependent variables (morphological characteristics) from a set of predictor variables (bioclimatic layers) (Gaviria et al., 2016).

Species distribution model

The species distribution model (SDM) was used to predict suitable areas for C. pubescens in places where it occurs. In this model, the locations of the current known distribution of C. pubescens are grouped. Four climatic prediction variables were selected: mean annual temperature (Bio1), annual rainfall (Bio12), altitude (DEM), and a potassium (K) layer as soil property (Bugarín-Montoya et al., 2002; Cruz-Cárdenas et al., 2014). These variables were taken from the spatial databases from http://www.worldclim.org (Hijmans et al., 2005). The estimation of the ecological niche was carried out through the maximum entropy algorithm, MaxEnt® Ver. 3.3 (Phillips et al., 2006). Once the potential distribution map was obtained, it was exported to the ArcMap® Versión 10.5.1 software (ESRI, 2017) for contextualization and image manipulation. The quality of the model was evaluated with > 0.9 values of the area under the curve (AUC), which characterizes the performance of the model. The result is a graph output that shows the discrimination capacity of a given presence (sensitivity) versus the discrimination capacity of a given absence (specificity) (Phillips et al., 2004).

RESULTS AND DISCUSSION

C. pubescens presence sites

Forty-four sites were identified with the presence of C. pubescens in the studied area. Using the coordinates, a distribution map was generated and two regions, A and B, were identified (Figure 1). Region A included the municipalities of Zongolica, Tlaquilpa, Texhuacan, Mixtla de Altamirano, Camerino Z. Mendoza, Soledad Atzompa and Tehuipango; region B included the municipalities of Calcahualco, Alpatlahuac, Chocamán, Coscomatepec, Huatusco and Tepatlaxco.

Region A has a Cf type climate, temperate humid with rains throughout the year, exceeding 2200 mm per year (> 18 % of winter rain), with little thermal oscillation (5 to 7 °C). Region B posesses a Cw type climate, temperate sub-humid with rains in the Summer, with more than 800 mm per year (< 10.2 % of winter rain), with isothermal oscillation range (< 5 °C) (Díaz et al., 2006; García, 2004). Both regions have altitudes ranging from 1300 to 2700 masl, places where the maximum rainfall arises as a result of the discharge of water by warm air masses from the sea (Krasilnikov et al., 2013). They also have an average annual temperature between 5 to 18 °C, while in the coldest month between -3 to 18 °C (García, 2004; SEMARNAT, 2006).

Ecological niche model for C. pubescens

The efficiency of the model reached an AUC value over 0.997, indicating that the ability of the model to classify presences was consistent in the prediction of the ecological niche (Baldwin, 2009; Phillips and Dudík, 2008). The results of the test data (P = 0.5) revealed that the model obtained is better than a randomized model, since the curves are located at the upper left corner (Figure 2) and indicate that there is no error of omission (100 % sensibility) and no error of commission (100 % specificity) (Cruz-Cárdenas et al., 2014). These results indicate that the samples were viably taken from the population and that they are truly representative, as there is no ambiguity in the prediction of the ecological niche for C. pubescens. In biological terms, the model reflects reliability, providing useful information for a breeding program. In this regard, Pearson et al. (2007) mentioned that few presences can give enough information for the MaxEnt model to produce acceptable predictions for the distribution of a certain species.

Figure 2 Goodness of fit of the model to estimate the potential distribution of C. pubescens. 

To this regard, the potential distribution of C. pubescens shown in the map of Figure 3, reveals that the best conditions of occurrence are found in the mountainous regions of Chiapas, Oaxaca, Puebla, and Hidalgo, Mexico (Figure 3B); however, a new registry was found in southern Veracruz, at the San Martin Sierra and the Santa Martha Sierra in the Tuxtlas region, at an altitude of 1500 masl (Figure 3B). From an ecological standpoint, C. pubescens is distributed in temperate regions, which coincide with areas of dense vegetation and subtropical forests. This is consistent with the reports on its distribution and habitat (Yamamoto et al., 2013).

Sources: Esri, USGS, NOAA.

Figure 3 Potential distribution area of C. pubescens in Mexico, as predicted by the maximum entropy model (MaxEnt). 

The model revealed other areas where the presence of C. pubescens is unknown (Leyva-Ovalle et al., 2018). These areas showed a restricted habitat potential, like the Sierra Madre Oriental and Sierra Madre Occidental in the states of Tamaulipas, Nuevo Leon and Chihuahua, Mexico, at an altitude gradient between 2200 and 2700 masl (Figure 3A).

According to the analysis of the contribution of each variable provided by the MaxEnt model, it was found that the variables with larger contribution to the model when they are used separately were annual rainfall (Bio12) with 43.9 %, potassium layer (K) with 23 %, altitude (DEM) with 22.3 %, and mean annual temperature (Bio1) with 10.7 %. This suggests that C. pubescens achieves good growth and development in temperate zones with high rainfall; however, the presence of low temperatures and frost at higher altitudes may limit its distribution (Soto and Geissert, 2011). Furthermore, the species grows on pyroclastic sediments, in acidic volcanic ash, which explains the high content of K, an element that is highly resistant to weathering (Krasilnikov et al., 2013). On the other hand, the humid conditions in areas where the species grows promote the acidity of the soil (pH = 4.2), and together with their mountainous relief, they cause erosion and loss of nutrients (Krasilnikov et al., 2013; Medina et al., 2010; SEMARNAT, 2006), demonstrating their adaptation even under these conditions; in this sense, the use of ecological niche models contributes to a better understanding of the relationships between species and the environment (Parolo et al., 2008).

Partial least square regression in C. pubescens

The least square regression is a technique that generalizes and combines the principal component analysis and the linear regression analysis. It is ideal to predict a set of dependent variables (e.g. morphological) from a set of predictor variables (e.g. climatological). The covariable with the highest inertia and positively linked to the first axis was mean annual rainfall (Bio12), while negatively it was the availability of potassium (K) in the soil. The covariable positively linked to the second axis was altitude (DEM), while negatively was mean annual temperature (Bio1).

Accessions MEXUVCAL1, MEXUVCAL3, MEXUVTL2, MEXUVBV1, MEXUVCV5 and MEXUVTER3 showed the best values in number of seeds, fruit thickness and peduncle length; also, their expression is better in more humid environments (Figure 4). These accessions were collected in Calcahualco, Alpatlahuac, and Tepatlaxco, Veracruz, Mexico, whose altitude ranges from 1400 to 1800 masl and have a mean annual rainfall between 1800 and 2300 mm.

Figure 4 Interaction of 44 accessions of C. pubescens and four environmental variables, against a matrix of seven morphological variables of the fruit. 

Meanwhile, accessions MEXUVCO1, MEXUVTEX1, MEXUVTZ1, MEXUVTLA2, MEXUVCO2, MEXUVCU2, MEXUVTZ2, MEXUVTEH1 and MEXUVDA1 were segregated, mainly due to the variables altitude (DEM) and potassium (K) as a soil property (Figure 4), they showed high values for fruit weight and width, which agrees with the locations of provenance, as Tehuipango and Alpatlahuac, Veracruz, Mexico, located at 2500 masl. The interactions detected in this dataset are mainly attributed to these two traits, from the ecological standpoint. This clarifies various ecological hypotheses that can contribute to better understand the relationships between environments and genotypes.

The presence of potassium (K) is closely linked to fruit weight, width and length, its presence is related to fruit quality. It is important to mention that the extraction of large amounts of this element is greatly due to the formation and development of fruits, which are the most demanding organ in Capsicum, with values from 70 to 80 % of the total amount extracted from each plant (Bugarín-Montoya et al., 2002).

The opposing projection of the covariables altitude (DEM) and mean annual temperature (Bio1) suggests that the latter changes differentially from one location to another, directly affecting some fruit characteristics. Accessions MEXUVBJ1, MEXUVTEP1, MEXUVTEN2 and MEXUVTET2 showed the lowest values in relation to the length of the placenta, which indicates that this characteristic was significantly affected by Bio1. According to the mean values of Bio1 registered in the locations where these accessions were collected, the values are above the optimum limits for C. pubescens (18 and 25 ºC). Pérez and Castro (2008) reported an optimum range from 15 to 22 ºC for proper development of C. pubescens; moreover, they mentioned that temperatures below 7 ºC halt the physiologicalmetabolic processes in the plant, while temperatures above 32 ºC during the critical stage of the crop stimulate abortion of flowers.

CONCLUSIONS

The distribution model MaxEnt produced probability values > 70 % for the presence of the species. These areas are located in the states of Tamaulipas, Nuevo Leon, Chihuahua and the Santa Martha Sierra in southern Veracruz; nevertheless, it is necessary to carry out exploratory trips to corroborate the presence of the species where it was predicted. Mean annual rainfall (Bio12), mean annual temperature (Bio1), potassium (K), and altitude (DEM) were the most importat bioclimatic variables to define specific environments for C. pubescens, and they significantly influence the expression of morphological characteristics of the fruit.

ACKNOWLEDGMENTS

The authors would like to thank the Universidad Veracruzana for the Grant “Programa para el Desarrollo Profesional Docente (PRODEP) 511-6/18-9245/PTC-874”.

BIBLIOGRAPHY

Baldwin R. A. (2009) Use of maximum entropy modeling in wildlife research. Entropy 11:854-866, https://doi.org/10.3390/e11040854 [ Links ]

Bugarín-Montoya R., A. Galvis-Spinola, P. Sánchez-García and D. García-Paredes (2002) Demanda de potasio del tomate tipo saladette. Terra Latinoamericana 20:391-399. [ Links ]

Casas A. (1998) Domesticación de plantas y recursos genéticos de México. Boletín de la Sociedad Botánica de México 62:73-76, https://doi.org/10.17129/botsci.1552 [ Links ]

Casas A. and J. Caballero (1995) Domesticación de plantas y el origen de la agricultura en Mesoamérica. Ciencias 40:36-45. [ Links ]

Clement C. R. (1999) 1492 and the loss of Amazonian crop genetic resources. II. Crop biogeography at contact. Economic Botany 53:203-216, https://doi.org/10.1007/BF02866499 [ Links ]

Cruz-Cárdenas G., L. López-Mata, C. A. Ortiz-Solorio, J. L. Villaseñor, E. Ortiz, J. T. Silva and F. Estrada-Godoy (2014) Interpolation of Mexican soil properties at a scale of 1: 1,000,000. Geoderma 213:29-35, https://doi.org/10.1016/j.geoderma.2013.07.014 [ Links ]

DeWitt D. and P. W. Bosland (2009) The Complete Chile Pepper Book: A Gardener’s Guide to Choosing, Growing, Preserving, and Cooking. Timber Press. Portland, Oregon, USA. 336 p. [ Links ]

Díaz P. G., J. A. Ruíz C., M. Á. Cano G., V. Serrano A. y G. Medina G. (2006) Estadísticas Climatológicas Básicas del Estado de Veracruz (Período 1961-2003). Libro Técnico Núm. 13. Campo Experimental Cotaxtla. INIFAP. Medellín de Bravo Veracruz, México. 292 p. [ Links ]

ESRI, Environmental Systems Research Institute (2017) ArcMap. Version 10.5.1. Redlands. Environmental Systems Research Institute, Inc. California. USA. [ Links ]

García E. (2004) Modificaciones a la Clasificación Climática de Köppen. Insttituto de Geografía, UNAM. México, D. F. 90 p. [ Links ]

Gaviria P. C. A., R. Pérez A. and M. E. Puerta Y. (2016) Regresión por mínimos cuadrados parciales PLS con datos de intervalo. Revista de la Facultad de Ciencias (Colombia) 5:148-159, https://doi.org/10.15446/rev.fac.cienc.v5n1.54616 [ Links ]

Gepts P. (2005) Plant and animal domestication as human-made evolution. In: Evolutionary Science and Society: Educating a New Generation. J. Cracraft and R.W. Bybee (eds.). Biological Sciences Curriculum Study and the American Institute of Biological Sciences. Colorado Springs, CO, USA. pp:180-186. [ Links ]

Gepts P. and R. Papa (2003) Evolution during domestication. In: Encyclopedia of Life Sciences. Macmillan Publisher Ltd. New York. pp:1-7, https://doi.org/10.1038/npg.els.0003071 [ Links ]

Hernández X. E. (1985) Biología Agrícola. CECSA. México, D. F. 62 p. [ Links ]

Hernández-Verdugo S., R. G. Guevara-González, R. F. Rivera-Bustamante, C. Vázquez-Yanes y K. Oyama (1998) Los parientes silvestres del chile (Capsicum spp.) como recursos genéticos. Boletín de la Sociedad Botánica de México 62:171-181, https://doi.org/10.17129/botsci.1559 [ Links ]

Hijmans R. J., S. E. Cameron, J. L. Parra, P. G. Jones and A. Jarvis (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965-1978, https://doi.org/10.1002/joc.1276 [ Links ]

IPGRI, International Plant Genetic Resources Institute (1995) Descriptors for Capsicum (Capsicum spp.). International Plant Genetic Resources Institute, Rome, Italy; The Asian Vegetable Research and Development Center, Taipei, Taiwan, and Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica. 51 p. [ Links ]

Krasilnikov P., M. C. Gutiérrez-Castorena, R. J. Ahrens, C. O. Cruz-Gaistardo, S. Sedov and E. Solleiro-Rebolledo (2013) The Soil of Mexico. Springer. Heidelberg, The Netherlands, 187 p. [ Links ]

Leyva-Ovalle O. R., P. Andrés-Meza, D. Del Valle-Hernández, I. Meneses-Márquez, J. Murguía-González, M. E. Galindo-Tovar, … y A. Espinosa-Calderón (2018) Caracterización morfológica de poblaciones de chile manzano (Capsicum pubescens Ruiz & Pav.) en la región centro del estado de Veracruz, México. Revista Bio Ciencias 5:e388, https://doi.org/10.15741/revbio.05.01.20 [ Links ]

Liu S., W. Li, Y. Wu, C. Chen and J. Lei (2013) De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids. PLoS ONE 8:e48156, https://doi.org/10.1371/journal.pone.0048156 [ Links ]

Loaiza-Figueroa F., K. Ritland, J. A. Laborde C. and S. D. Tanksley (1989) Patterns of genetic variation of the genus Capsicum (Solanaceae) in Mexico. Plant Systematics and Evolution 165:159-188, https://doi.org/10.1007/BF00936000 [ Links ]

Mastretta-Yanes A., M. R. Bellon, F. Acevedo, C. Burgeff, D. Piñero y J. Sarukhán (2019) Un programa para México de conservación y uso de la diversidad genética de las plantas domesticadas y sus parientes silvestres. Revista Fitotecnia Mexicana 42:321-334, https://doi.org/10.35196/rfm.2019.4.321-334 [ Links ]

Meckelmann S. W., C. Jansen, D. W. Riegel, M. van Zonneveld, L. Ríos, K. Peña, … and M. Petz (2015) Phytochemicals in native Peruvian Capsicum pubescens (Rocoto). European Food Research and Technology 241:817-825, https://doi.org/10.1007/s00217-015-2506-y [ Links ]

Medina C. A., T. E. Salazar C. y J. L. Álvarez P. (2010) Fisiografía y suelos. In: Atlas del Patrimonio Natural, Histórico y Cultural de Veracruz. J. Ortíz y E. Florescano (eds.). Universidad Veracruzana. Gobierno del Estado de Veracruz. Xalapa, Veracruz. pp:29-41. [ Links ]

Oboh G., R. L. Puntel and J. B. T. Rocha (2007) Hot pepper (Capsicum annuum, tepin and Capsicum chinese, Habanero) prevents Fe2+-induced lipid peroxidation in brain - in vitro. Food Chemistry 102:178-185, https://doi.org/10.1016/j.foodchem.2006.05.048 [ Links ]

Parolo G., G. Rossi and A. Ferrarini (2008) Toward improved species niche modelling: Arnica montana in the Alps as a case study. Journal of Applied Ecology 45:1410-1418, https://doi.org/10.1111/ j.1365-2664.2008.01516.x [ Links ]

Pearson R. G., C. J. Raxworthy, M. Nakamura and A. Townsend P. (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34:102-117, https://doi.org/10.1111/j.1365-2699.2006.01594.x [ Links ]

Pérez-Grajales M., V. A. González-Hernández, M. C. Mendoza-Castillo, C. Peña-Valdivia, A. Peña-Lomelí and J. Sahagún-Castellanos (2004) Physiological characterization of manzano hot pepper (Capsicum pubescens R & P) landraces. Journal of the American Society for Horticultural Science 129:88-92, https:// doi.org/10.21273/JASHS.129.1.0088 [ Links ]

Pérez G. M. y R. Castro B. (2008) El Chile Manzano. Universidad Autónoma Chapingo. Chapingo, Estado de México. 128 p. [ Links ]

Phillips S. J. and M. Dudík (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161-175, https://doi.org/10.1111/j.09067590.2008.5203.x [ Links ]

Phillips S. J., M. Dudík and R. E. Schapire (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the 21st International Conference on Machine Learning. ACM Press. New York, USA. pp:655-662. [ Links ]

Phillips S. J. , R. P. Anderson and R. E. Schapire (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231-259, https://doi.org/10.1016/j.ecolmodel.2005.03.026 [ Links ]

Pickersgill B. (2007) Domestication of plants in the Americas: insights from Mendelian and molecular genetics. Annals of Botany 100:925-940, https://doi.org/10.1093/aob/mcm193 [ Links ]

Rick C. M. (1950) Capsicum pubescens: a little-known pungent pepper from Latin America. Missouri Botanical Garden Bulletin 38:36-42. [ Links ]

Rodríguez-Burruezo A., J. Prohens, M. D. Raigón and F. Nuez (2009) Variation for bioactive compounds in ají (Capsicum baccatum L.) and rocoto (C. pubescens R. & P.) and implications for breeding. Euphytica 170:169-181, https://doi.org/10.1007/s10681-0099916-5 [ Links ]

Ruiz H. and J. Pavon (1799) Flora Peruviana, et Chilensis, Sive Descriptiones, et Icones Plantarum Peruvianarum, et Chilensium, Secundum Systema Linnaeanum Digestae, Cum Characteribus Plurium Generum Evulgatorum Reformatis. Tomus II. Typis Gabrielis de Sancha. Madrid. 76 p. [ Links ]

SEMARNAT, Secretaría de Medio Ambiente y Recursos Naturales (2006) Atlas Geográfico del Medio Ambiente y Recursos Naturales. Secretaría de Medio Ambiente y Recursos Naturales. México, D.F. 78 p. [ Links ]

Soto E. M. y D. Geissert K. (2011) Geografía. In: La Biodiversidad en Veracruz: Estudio de Estado. Vol. I. Contexto Actual del Estado y Perspectivas de Conservación de su Biodiversidad. A. Cruz A. (ed.). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Gobierno del Estado de Veracruz, Universidad Veracruzana, Instituto de Ecología, A.C. México, D. F. pp:31-34. [ Links ]

Yamamoto S., T. Djarwaningsih and H. Wiriadinata (2013) Capsicum pubescens (Solanaceae) in Indonesia: its history, taxonomy, and distribution. Economic Botany 67:161-170, https://doi.org/10.1007/s12231-013-9230-y [ Links ]

Received: August 15, 2019; Accepted: August 19, 2020

*Autor de correspondencia (pandres@uv.mx)

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License