SciELO - Scientific Electronic Library Online

 
vol.44 número2Rendimiento y valor nutricional del pasto maralfalfa (Pennisetum sp.) a diferentes edades índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista fitotecnia mexicana

versión impresa ISSN 0187-7380

Rev. fitotec. mex vol.44 no.2 Chapingo abr./jun. 2021  Epub 09-Oct-2023

https://doi.org/10.35196/rfm.2021.2.133 

Artículo de revisión

In situ phytoremediation in Mexico: a review

Fitorremediación in situ en México: una revisión

Cynthia Wong-Argüelles1 

Candy Carranza-Álvarez2  * 

Angel J. Alonso-Castro3 

César A. Ilizaliturri-Hernández4 

1 Universidad Autónoma de San Luis Potosí (UASLP), Programas Multidisciplinarios de Posgrado en Ciencias Ambientales, San Luis Potosí, S.L.P., México.

2 UASLP, Unidad Académica Multidisciplinaria Zona Huasteca, Cd. Valles, S.L.P., México.

3 Universidad de Guanajuato, División de Ciencias Naturales y Exactas, Guanajuato, Guanajuato, México.

4 UASLP, Centro de Investigación Aplicada en Ambiente y Salud, San Luis Potosí, S.L.P., México.


SUMMARY

In Mexico, contamination by potentially toxic elements in soil and water represents important ecological and health problems. Plants capable of growing on anthropogenically-modified soils reflect their ability to adapt to diverse environmental conditions. Most of the phytoremediation studies are carried out under laboratory conditions, and only a few studies evaluate the phytoextraction capacity in situ. This review summarizes the information obtained from scientific sources on in situ phytoremediation studies carried out in Mexico. Eighty-five percent of the studies corresponded to sites contaminated with trace metals by mining activities. Plants with potential to be used as accumulators or hyperaccumulators of potentially toxic elements are described, such as Hydrocotyle ranunculoides, Parietaria pensylvanica and Commelina diffusa for Zn; Rorippa nasturtium-aquaticum and Simsia amplexicaulis for Cu; Nicotina glauca, Flaveria angustifolia and Flaveria trinervia for As, and Buddleja scordioides for phytoremediation of soils contaminated by Pb. Native plant species should be studied to establish mechanisms of metal extraction and the water-soil-microorganisms interaction to improve the efficiency of in situ phytoremediation. The information described here can be useful for planning the remediation of sites contaminated by potentially toxic elements in Mexico and other parts of the world.

Index words: Mining; phytoremediation; pollution; potentially toxic metals

RESUMEN

En México, la contaminación por elementos potencialmente tóxicos en el suelo y el agua representa importantes problemas ecológicos y de salud. Las plantas capaces de crecer en terrenos antropogénicamente modificados reflejan su capacidad de adaptación a diversas condiciones ambientales. La mayoría de los estudios de fitorremediación se lleva a cabo en condiciones de laboratorio, y sólo unos pocos estudios evalúan la capacidad de fitoextracción in situ. Esta revisión resume la información obtenida de fuentes científicas sobre los estudios de fitorremediación in situ realizados en México. El 85 % de los estudios reportados corresponde a sitios contaminados con metales traza por actividades mineras. Se describen plantas con potencial para ser utilizadas como acumuladoras o hyperacumuladoras de elementos potencialmente tóxicos, como Hydrocotyle ranunculoides, Parietaria pensylvanica y Commelina diffusa para Zn; Rorippa nasturtium-aquaticum y Simsia amplexicaulis para Cu; Nicotina glauca, Flaveria angustifolia y Flaveria trinervia para As y Buddleja scordioides para la fitoremediación de suelos contaminados por Pb. Las especies de plantas nativas deben estudiarse para establecer mecanismos de fitoextracción de metales y la interacción agua-suelo-microorganismos para mejorar la eficiencia de la fitorremediación in situ. La información aquí descrita tiene utilidad para planificar la remediación de sitios contaminados por elementos potencialmente tóxicos en México y para diferentes sitios del mundo.

Palabras clave: Contaminación; fitorremediación; elementos potencialmente tóxicos; plantas

INTRODUCTION

Soil and water pollution are major environmental issues in the world. Metals are not biodegradable, they generally have little mobility and the ability to persist in natural ecosystems for a long time, even if they are in small amounts in the environment (Chiţimus et al., 2016; Nithiyanantham et al., 2018; Strungaru et al., 2015).

Mining and smelting are important economic activities in Mexico (INEGI, 2010). The disposal of mining by-products, including metals and metalloids, produce considerable adverse environmental effects (Machado-Estrada et al., 2013). Each year, approximately 100 million tons of mining waste is generated in Mexico (SEMARNAT, 2010). Mining industries that extract Ag, Pb and Zn pour their residues into water bodies, which are employed for crop farming (Armienta et al., 2020); therefore, these contaminants might be incorporated into the food chain and pose serious risks for human health (Hazrat et al., 2013). In addition, the presence of these potentially toxic elements (PTE) could reduce land productivity (Prieto-Garcia et al., 2005). Mine tailings in Mexico also represent an important ecological problem due to the dispersion of pollutants (Cortés-Jiménez et al., 2013). The PTE in Mexico are Hg, As, Pb, Cd, Zn and Cr. The states from central Mexico have been disturbed by the pollution of soils and water with PTE (Covarrubias and Peña, 2017; González-Dávila et al., 2012; Hernández-Silva et al., 2012). In addition, intoxication by Hg in humans has been reported (Martínez-Trinidad et al., 2013).

In situ phytoremediation is based on the extraction of organic and inorganic pollutants from the environment, where plants grow in natural conditions and are exposed to different PTE (Figueroa et al., 2008). This strategy is non-disruptive, environmentally-friendly and cost-effective in the long-term. This process considers the level of contamination in the polluted site and the output of contaminants (van der Ent et al., 2013). The physicochemical parameters that influence the efficacy of in situ phytoremediation include pH, dissolved oxygen, sediment type, pollutant concentration, temperature, salinity, organic matter, weather, redox conditions, cation exchange capacity, hydrological cycle and mobilization of these contaminants in soil/water (Anawar, 2015; O’Connor et al., 2019).

A plant considered to be used for phytoremediation must have the following features: high accumulation capacity of contaminants, high biomass production, quick adaptation to prevailing environmental and climatic conditions, capacity for nitrogen fixation, fast growth, deep root system and high pollution translocation from roots to shoots (Hazrat et al., 2013; Maiti and Jaiswal, 2008).

In situ phytoremediation involves the study of several polluting elements, evaluates chemical interactions among ions in the water/soil, and assesses the ability of plants throughout their cycle to survive in contaminated environments (González-Chávez et al., 2017); therefore, these studies can be useful for planning remediation of sites that have been contaminated with PTE. This review summarizes the information available from in situ phytoremediation studies carried out in Mexico.

METHODS

Literature search was performed to analyze studies carried out in Mexico with plants used for in situ extraction of PTE and trace metals from soil and water. The information was taken from Scopus, Web of Science, Scielo, and Pubmed. Scientific reports were searched through the following keywords: plant “or” hyperaccumulator, phytoremediation “and” in situ, phytoextraction, and Mexico. Scientific documents written in Spanish were also included in this review. Publications involved in this paper dated from the last three decades.

USE OF NATIVE PLANTS FOR in situ PHYTOREMEDIATION

Native plants represent a good strategy for in situ phytoremediation studies (Santos-Jallath et al., 2012). Usually, native plants present better rates of survival, growth, adaptation and reproduction under environmental stress conditions, compared to introduced plants (Fernández et al., 2010; Machado-Estrada et al., 2013; Yoon et al., 2006). In spite of their high ability to accumulate heavy metals, many plants are unable to adapt to different climates or different environmental conditions including drought and salinity. In addition, the introduction of new plant species might affect the dynamics of some ecosystems because some plants are considered invasive (Yoon et al., 2006).

The identification and use of native plants with high tolerance and capability to accumulate or stabilize PTE can decrease the spreading of contaminants and help to regenerate vegetation toward remediation of those sites (Carrillo and González-Chávez, 2006; Cortés-Jiménez et al., 2013; Salas-Luevano, 2009; Sánchez-López et al., 2015). Furthermore, native plants could be used as biomonitors, since they provide evidence on the existence of contaminants and as bioremediators of areas that are contaminated with PTE (Jeddi and Chaieb 2018; Khalid et al., 2019; Ngayila et al., 2007; Tzvetkova and Petkova, 2015). Native plants can be considered as models for studying mechanisms of tolerance and accumulation (Carranza-Álvarez et al., 2008).

In situ ACCUMULATION OF TRACE METALS BY PLANTS IN MEXICO

There are many sites in Mexico contaminated with PTE, most of them exceed the levels of trace metals in water/soil considered toxic (Mireles et al., 2004; Puga et al., 2006). Forty-six plant species were found with potential use on in situ phytoremediation studies in Mexico (Table 1). Most of the reports correspond to areas of North Central Mexico polluted with trace metals due to mining activities. This region is characterized by arid and semi-arid climates where small trees grow. The information indicates that members of the Asteraceae family and Flaveria genus are the most cited plant species for in situ phytoremediation in Mexico. This might indicate that they have developed mechanisms to tolerate, accumulate, or to avoid heavy metals.

Table 1 In situ phytoremediation studies in Mexico. 

State Site of study Potential plant species PTE (maximum accumulation reported in mg kg-1) Reference
As Cd Cr Cu Fe Hg Mn Se Pb Zn
Chihuahua San Francisco del Oro Baccharis glutinosa Pers. (Asteraceae) 88.23 - - - - - - - - 361.46 Puga et al. (2006)
Cynodon dactylon (L.) Pers (Poaceae) - - - - - - - - - 302.18
Parral, Santa Barbara, Naica Eleocharis sp. (Cyperaceae) 301 ± 0.72 - - - - - - - - - Flores-Tavizón et al. (2003)
Ciudad de México Xochimilco Eichhornia crassipes (Mart.) Solms (Pontederiaceae) - 0.7 ± 9 58.1 ± 7 27.3 ± 12 1660.4 ± 18 - 587.3 ±10 - 7.7 ± 6 135.5 ±17 Carrión et al. (2012)
Estado de México Lerma River Hydrocotyle ranunculoides L. f. (Araliaceae) - - 15.76 30.37 20268 - 4324 - 7.7 172 Zarazúa et al. (2013)
Guanajuato San German, León Scirpus americanus Pers. (Cyperaceae) 58 65 971 - - - - 90 - - Mauricio et al. (2010)
Silver and gold mining Ricinus communis L. (Euphorbiaceae) - 0.123 ± 0.008 - 2.6 ±0.07 - - - - 2.74 ± 0.06 - Figueroa et al. (2008)
Guerrero La Concha, Taxco Gnaphalium chartaceum Greenm (Asteraceae) - - - 121 - - 744 - 2901 4906 Cortés-Jiménez et al. (2013)
Wigandia urens (Ruiz & Pav.) Kunth (Boraginaceae) - - - - - - - - - 1027
Senecio salignus DC (Asteraceae) - - - - - - - - - 2477
Zimapán Zea mays L. (Poaceae) 4.26 ± 0.96 1.50 ± 0.88 - - 1322 ± 284 - - - 91.7 ± 16.5 335 ± 24 Armienta et al. (2020)
Rorippa nasturtium-aquaticum (L.) Hayek (Brassicaceae) - - - 350 - - - - - - Carmona-Chit et al. (2016)
Hidalgo Zimapán Parietaria pensylvanica Muhl. ex Willd. (Urticaceae) - - - - - - - - - 7630
Commelina difusa Burm. f. (Commelinaceae) - - - - - - - - - 5086
San Francisco and Santa Ana, Zimapán Viguiera dentata (Cav.) Spreng. (Asteraceae) - 21 ±3 - - - - 189 ± 57 - - 2231 ± 29 Sánchez-López et al. (2015)
Gnaphalium sp. (Asteraceae) - - - - - - 338 ± 36 - - -
Cuphea lanceolata W.T. Aiton (Lythraceae) - - - 352 ± 25 - - - - - -
Nonoalco Ambrosia psilostachya DC. (Asteraceae) - - - - - - 89.8 ± 27.07 - - - Rivera-Becerril et al. (2013)
Zimapán Ricinus communis L (Euphorbiaceae) - 8 - 48 - - 180 - 170 590 Ruiz et al. (2013)
Molango Platanus mexicana Moric. (Platanaceae) - - - - - - 410.86 ± 5.11 - - - Juárez-Santillán et al. (2010)
Asclepias curassavica L. (Apocynaceae) - - - - - - 1507.69 ± 9.78 - - -
Solanum diversifolium Dunal (Solanaceae) - - - - - - 562.57 ± 49.92 - - -
Pluchea symphytifolia (Mill.) Gillis (Asteraceae) - - - - - - 1062.58 ± 7.0 - - -
Cnidoscolus multilobus (Pax) I.M. Johnst. (Euphorbiaceae) - - - - - - 1055.80 ± 22.27 - - -
Dos Carlos, Pachuca Solanum corymbosum Jacq. (Solanaceae) - - - 6 - - - - - - Hernández-Acosta et al. (2009)
Brickellia veronicaefolia (Kunth) A. Gray (Asteraceae) - - - - - - - - 5 20
Atriplex suberecta I. Verd. (Amaranthaceae) - 1 - - - - - - - -
Cynodon dactylon (L.) Pers. (Poaceae) - - - - - - 69 - - -
Zimapán Prosopis laevigata (Humb. & Bonpl. ex Willd.) M.C. Johnst. (Fabaceae) 1400 - - - - - - - - - Armienta et al. (2008)
Acacia farnesiana (L.) Willd. (Fabaceae) 225 - - - - - - - - -
Querétaro San Joaquín Zea mays L. (Poaaceae) - - - - - 0.04 - 8.2 - - - - Martínez-Trinidad et al. (2013)
San Joaquín Zea mays L. (Poaaceae) - - - - - 0.04 -8.7 - - - - Hernández-Silva et al. (2012)
La Negra Mine Nicotiana glauca Graham (Solanaceae) 91.94 106.07 - 95.17 - - - - - 1984.48 Santos-Jallath et al. (2012)
Flaveria pubescens Rydb. (Asteraceae) - - - 102.46 - - - - 222.89 755.82
Tecoma stans (L.) Juss. ex Kunth (Bignoniaceae) - - - - - - - - - 942.8
San Luis Potosí Villa de la Paz Euphorbia prostrata Aiton (Euphorbiaceae) 165 - - 88 - - - - 66 300 Machado-Estrada et al. (2013)
Parthenium incanum Kunth (Asteraceae) 130 - - 76 - - - - 34 350
Zinnia acerosa (DC.) A. Gray (Asteraceae) 93 - - 70 - - - - 49 340
Real de Catorce Nicotiana tabacum L. (Solanaceae) - - - 10.33 - - 5.15 - - 6.93 Levresse et al. (2012)
Villa de la Paz Ambrosia artemisiifolia L. (Asteraceae), - - - - - - - - - 405.7 Franco-Hernández et al. (2010)
Simsia amplexicaulis (Cav.) Pers. (Asteraceae), - - - 75.8 - - - - - -
Flaveria angustifolia (Cav.) Pers. (Asteraceae), 198.5 - - - - - - - - -
Flaveria trinervia (Spreng.) C. Mohr (Asteraceae) 179.4 - - - - - - - - -
Artificial lagoon Typha latifolia L. (Typhaceae) - 4.6 ± 0.08 - - - - - - - - Carranza-Álvarez et al. (2008)
Scirpus americanus Pers. (Cyperaceae) - - 344.6 ± 15.4 - 1229.9 ± 20 - 3330.2 ± 125 - 26.5 ± 3.5 -
Yucatán Yum Balam Reserve Thalassia testudinum Banks & Sol. ex K.D. Koenig (Hydrocharitaceae) - 0.2-5 0.5-1.1 - 141.4 - 504.3 - - - - - Avelar et al. (2013)
Zacatecas Asphodelus fistulosus L. (Asphodelaceae) - - - - - - - - 917 ± 1 1946 ± 2 Flores et al. (2018)
Dalea bicolor Humb. & Bonpl. ex Willd. (Fabaceae) - - - - - - - - 970 ± 2 1296 ± 1
Fresnillo Acacia schaffneri (S. Watson) F.J. Herm. (Fabaceae) 3838 17 - - - - - - 534 - Salas-Luévano et al. (2017)
Amaranthus hybridus L. (Amaranthaceae) 2218 17 - - - - - - 842 -
Arundo donax L. (Poaceae) 1078 7.9 - - - - - - 272 -
Asphodelus fistulosus L. (Asphodelaceae) 4387 13 - - - - - - 512 -
Buddleja cordata Kunth (Scrophulariaceae) 3454 24 - - - - - - 1282 -
Plantago lanceolata L. (Plantaginaceae) 4150 17 - - - - - - 556 -
Zacatecas Guadalupe Zea mays L. (Poaaceae) 98.15 - - 213.63 - - 629.71 - 293.24 849.74 González-Dávila et al. (2012)
Francisco I. Madero Amaranthus hybridus L. (Amaranthaceae) - - - - - - - - 2208 ± 136 - Salas-Luevano et al. (2009)
Buddleja ser. Scordioides E.M. Norman (Scrophulariaceae) - - - - - - - - 1378 ± 153 -
Cerdia congestiflora Hemsl. (Caryophyllaceae) - - - - - - - - 1175 ± 126 -
El Bote, San Martín, Fresnillo and Noria de los Ángeles Polygonum aviculare L. (Polygonaceae) - - - - - - - - - 9236 Carrillo and González-Chávez (2006)
Jatropha dioica Sessé ex Cerv. (Euphorbiaceae) - - - - - - - - - 6249

Fuente: PTE: potentially toxic elements. Concentrations of heavy metals obtained in hyperaccumulators plants are shown in bold type.

The order of accumulation of heavy metals among the studied plants is as follows: Fe > Zn > Mn > Pb > As > Cr > Cu > Cd > Se > Hg. Studies with native vegetation growing on PTE polluted areas in México are scarce compared to other regions of the world (Carrillo and González-Chávez, 2006). Only 25 studies have been carried out in Southern Mexico (Avelar et al. 2013), where most areas are covered by rainforest.

Some reports have considered physicochemical characteristics of soil/water and the accumulation of PTE in plants (Carranza-Álvarez et al., 2008; Levresse et al., 2012; Mireles et al., 2004; Santos-Jallath et al., 2012). These characteristics are helpful to evaluate bioavailability of trace elements and their subsequent accumulation, sequestration or immobilization in plant tissues. Accumulation of PTE in plants depends on the chemical species of the PTE in soil/water, pH, age of the plant, mechanisms of mobilization at the sediment-water interface, and especially, the metabolism efficiency of plant ecotypes (Carranza-Álvarez et al. 2008; Levresse et al. 2012).

The highest accumulation of trace metals in roots is a common pattern in many phytoremediation studies in Mexico (Carrión et al., 2012; Martínez-Trinidad et al., 2013, Mauricio et al., 2010; Mireles et al., 2004). The distribution of PTE in roots or aerial parts is affected by variation in the organization of root tissues, the size of the metal influences its movement within plants, and the mobility rate in the transport of PTE from the root to aerial parts (Skorbiłowicz et al., 2016; Vaculík et al., 2012; Yabanli et al., 2014). In some cases, roots can act as a barrier for metal translocation to provide protection against heavvy metal toxicity (Liu et al., 2009). Furthermore, the transportation of PTE from roots to shoots could take months; nevertheless, Puga et al. (2006) found out that most of the trace metals they evaluated (As and Zn) lied in aerial parts of the plants. It is known that athmospheric deposition might be another factor associated to the high accumulation of toxic elements in aerial parts (De Temmerman et al., 2015).

Variations in accumulation patterns of PTE were observed in different plant species gathered from different sites of collection (Carmona-Chit et al., 2016; Franco-Hernández et al., 2010; Levresse et al. 2012; Salas-Luevano et al., 2009); this might be attributed to the varied accumulation/tolerance mechanisms developed by each plant species against PTE toxicity, as well as variations among plant populations (Wan et al., 2013).

HYPERACCUMULATOR PLANTS UNDER FIELD CONDITIONS IN MEXICO

According to van der Ent et al. (2013), plants capable of hyper-accumulating trace metals must meet these criteria: bioaccumulation factor (BF) higher than 1000 μg metal g-1 dry weight and translocation factor (TF) higher than 1. In México, a few metal-tolerant, accumulator, and hyperaccumulator plants have been reported (Table 1). Some of these plant species are cited in this review; for instance, Hydrocotyle ranunculoides, Parietaria pensylvanica and Commelina diffusa could be considered as hyperaccumulators of Zn (Carmona-Chit et al., 2016; Zarazúa-Ortega et al., 2013), whereas Polygonium aviculare accumulated 9230 mg Zn kg-1, which is close to the treshold (10,000 mg kg-1) considered for hyperaccumulator plants (Carrillo and González-Chávez, 2006). Rorippa nasturtium-aquaticum (synonym Nasturtium officinale W.T. Aiton) and Simsia amplexicaulis could be considered as strong accumulators of Cu (Franco-Hernández et al., 2010). Nicotina glauca, Flaveria angustifolia and Flaveria trinervia can be considered accumulators of As, rather than hyperaccumulators (Franco-Hernández et al., 2010; Santos-Jallath et al., 2012). Flaveria trinervia easily adapts to grow on different environments, which is a highly desirable criterion in phytoremediation studies. Buddleja scordioides is a good candidate to be used in phytoremediation of Pb-contaminated soils (Salas-Luevano et al., 2009); however, special attention is needed with Buddleja scordioides and Simsia amplexicaulis since they are also used in traditional medicine in Mexico (Cortés et al., 2006; Sotero-García et al., 2016). Thus, contaminants such as Pb and Cu could be ingested by humans and cause health problems. Puga et al., (2006) studied Baccharis glutinosa for the accumulation of As and Zn. Cynodon dactylon is a potential accumulator of Zn and Mn (Hernández-Acosta et al., 2009; Puga et al., 2006). Juárez-Santillán et al., (2010) studied plants in a mining area of Mn in Hidalgo, Mexico and identified Cnidoscolus multilobus, Platanus mexicana, Solanum diversifolium, Asclepius curassavica and Pluchea sympitifolia as accumulator species.

It is interesting to note that plants cited in this review such as Parietaria pensylvanica, Buddleja scordioides, Flaveria angustifolia and Flaveria trinervia are being reported for the first time for their ability to accumulate metals. This indicates that more studies should be carried out with flora from Mexico to evaluate their use in phytoremediation. From accumulator plant species, Hydrocotyle ranunculoides and Rorippa nasturtium-aquaticum are dispersed worldwide while Parietaria pensylvanica and Commelina diffusa are native to America.

PERSPECTIVES AND FUTURE NEEDS

Many phytoremediation reports are conducted using controlled conditions; however, the ability of plants for accumulating PTE under field conditions remains to be studied in Mexico. This review provides information about the potential plant species to accumulate As, Cd, Cr, Cu, Fe, Hg, Mn, Se, Pb and Zn (Table 1).

As far as we know, the mechanism of metal accumulation by plants cited in this review remains to be studied; thus, it is essential to generate scientific evidence to understand how these plant species accumulate or hyperaccumulate trace elements at the molecular level. Several plants that grow for years under heavy metal-induced stress have used physiological strategies for their adaption and growth under these conditions. Some of these mechanisms include the enhance of xylem loading capacity for PTE, as well as the excretion of phytochelatins, metallothioneins and low molecular weight organic acids (Koźmińska et al., 2018). The efficacy of in situ phytoremediation will rely on understanding these molecular mechanisms.

Some microorganisms such as Streptomyces tendae, Funneliformis mosseae, Bacillus thuringiensis, Microbacterium saperdae, Pseudomonas monteilii, Enterobacter cancerogenes, Serratia marcescens and Rhodotorula mucilaginosa (Babu et al., 2013; Dimkpa et al., 2009; Hassan et al., 2013; Ji et al., 2012; Whiting et al., 2001) can enhance phytoremediation through several pathways: i) accelerating plant growth, ii) increasing bioavailability of PTE, iii) facilitating metal translocation from the soil to the roots, and iv) inducing the translocation from the roots to shoots (Ma et al., 2001; Rajkumar et al., 2012). Mycorrhizal status of PTE-accumulating plants growing in contaminated sites should also be studied. The interactions among Mexican native plants and microorganisms is an interesting topic to study in the framework of in situ phytoremediation. It is important to use herbarium techniques for taxonomic identification of plant species to be incorporated in phytoremediation studies under controlled and field conditions.

Before carrying out a phytoremediation study, the speciation of metals in soil and water should also be considered to evaluate their bioavailability, mobilization processes of these elements in soil-plant or water-plant systems, and their possible interactions with soil particles (Guo et al., 2019; Pan et al., 2019).

CONCLUSIONS

Native plants should be considered as a good strategy for remediation and reclamation of soil and water contaminated with PTE. This review clearly demonstrates that more studies are needed with flora from Mexico to evaluate their use in phytoremediation. There are several crop species (i.e. Amaranthus hybridus and Zea mays) that present tolerance to heavy metal contamination. Some of these plants could be metal excluders. In addition, the molecular mechanisms by which plants hyperaccumulate toxic elements remain to be explored.

BIBLIOGRAPHY

Anawar H. M. (2015) Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge. Journal of Environmental Management 158:111-121, https://doi.org/doi: 10.1016/j.jenvman.2015.04.045 [ Links ]

Armienta M. A., L. K. Ongley, R. Rodríguez, O. Cruz, H. Mango and G. Villaseñor (2008) Arsenic distribution in mesquite (Prosopis laevigata) and huizache (Acacia farnesiana) in the Zimapán mining area, México. Geochemistry: Exploration, Environment, Analysis 8:191-197, https://doi.org/10.1144/1467-7873/07-144 [ Links ]

Armienta M. A. , M. Beltrán, S. Martínez and I. Labastida (2020) Heavy metal assimilation in maize (Zea mays L.) plants growing near mine tailings. Environmental Geochemistry and Health 42:2361-2375, https://doi.org/10.1007/s10653-019-00424-1 [ Links ]

Avelar M., B. Bonilla, M. Merino, J.A. Herrera, J. Ramirez, H. Rosas and A. Martínez (2013) Iron, cadmium, and chromium in seagrass (Thalassia testudinum) from a coastal nature reserve in karstic Yucatán. Environmental Monitoring and Assessment 185:7591-7603, https://doi.org/10.1007/s10661-013-3121-7 [ Links ]

Babu A. G., J. D. Kim and B. T. Oh (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. Journal of Hazardous Materials 250-251:477-483, https://doi.org/10.1016/j.jhazmat.2013.02.014 [ Links ]

Carmona-Chit E., R. Carrillo-González, M. C. A. González-Chávez, H. Vibrans, L. Yáñez-Espinosa and A. Delgado-Alvarado (2016) Riparian plants on mine runoff in Zimapan, Hidalgo, Mexico: Useful for phytoremediation? International Journal of Phytoremediation 18:861-868, https://doi.org/10.1080/15226514.2016.1156639 [ Links ]

Carranza-Álvarez C., A. J. Alonso-Castro , M. C. Alfaro-De la Torre and R. F. García-De la Cruz (2008) Accumulation and distribution of heavy metals in Scirpus americanus and Typha latifolia from an artificial lagoon in San Luis Potosí, México. Water, Air, and Soil Pollution 188:297-309, https://doi.org/10.1007/s11270-007-9545-3 [ Links ]

Carrillo G. R. and M. C. A. González-Chávez (2006) Metal accumulation in wild plants surrounding mining wastes.Environmental Pollution 144:84-92, https://doi.org/10.1016/j.envpol.2006.01.006 [ Links ]

Carrión C., C. Ponce-de León, S. Cram, I. Sommer, M. Hernández y C. Vanegas (2012) Aprovechamiento potencial del lirio acuático (Eichhornia crassipes) en Xochimilco para fitorremediación de metales. Agrociencia 46:609-620. [ Links ]

Chiţimus D., C. Radu, V. Nedeff, E. Mosnegutu and N. Bârsan (2016) Studies and researches on Typha latifolia’s (Bulrush) absorption capacity of heavy metals from the soil. Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry 17:381-393. [ Links ]

Cortés A. R., A. J. Delgadillo, M. Hurtado, A. M. Domínguez-Ramírez , J. R. Medina and K. Aoki (2006) The antispasmodic activity of Buddleja scordioides and Buddleja perfoliata on isolated intestinal preparations. Biological and Pharmaceutical Bulletin 29:1186-1190, https://doi.org/10.1248/bpb.29.1186 [ Links ]

Cortés-Jimenez E. V., V. Mugica-Álvar, M. C. A. González-Chávez, R. Carrillo-González, M. Martínez G. and M. Vava M. (2013) Natural revegetation of alkaline tailing heaps at Taxco, Guerrero, México. International Journal of Phytoremediation 15:127-141, https://doi.org/10.1080/15226514.2012.683208 [ Links ]

Covarrubias S. A y J. J. Peña C. (2017) Contaminación ambiental por metales pesados en México: problemática y estrategias de fitorremediación. Revista Internacional de Contaminación Ambiental 33:7-21, https://doi.org/10.20937/RICA.2017.33.esp01.01 [ Links ]

De Temmerman L., N. Waegeneers, A. Ruttens and K. Vandermeiren (2015) Accumulation of atmospheric deposition of As, Cd and Pb by bush bean plants. Environmental Pollution 199:83-88, https://doi.org/10.1016/j.envpol.2015.01.014 [ Links ]

Dimkpa C. O., D. Merten, A. Svatoš, G. Büchel and E. Kothe (2009) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biology and Biochemistry 41:154-162, https://doi.org/10.1016/j.soilbio.2008.10.010 [ Links ]

Fernández R., I. Carballo, H. Nava, R. Sánchez-Tamés, A. Bertrand and A. González (2010) Looking for native hyperaccumulator species useful in phytoremediation. In: Handbook of Phytoremediation. I. A. Golubev (ed.). Nova Science Publishers. Hauppauge, New York, USA. pp:297-330. [ Links ]

Figueroa J. A. L., K. Wrobel, S. Afton, J. A. Caruso, J. Gutierrez and K. Wrobel (2008) Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico. Chemosphere 70:2084-2091, https://doi.org/10.1016/j.chemo sphere.2007.08.066 [ Links ]

Flores Torre J. A., K. Mitchell, M. S. Ramos G., A. L. Guerrero B., L. Yamamoto F. and F. J. Avelar G. (2018) Effect of plant growth on Pb and Zn geoaccumulation in 300-year-old mine tailings of Zacatecas, México. Environmental Earth Sciences 77:386, https://doi.org/10.1007/s12665-018-7563-7 [ Links ]

Flores-Tavizón E., M. T. Alarcón-Herrera, S. González-Elizondo and E. J. Olguín (2003) Arsenic tolerating plants from mine sites and hot springs in the semi-arid region of Chihuahua, Mexico. Acta Biotechnologica 23:113-119, https://doi.org/10.1002/abio.200390016 [ Links ]

Franco-Hernández M. O., M. S. Vásquez-Murrieta, A. Patiño-Siciliano and L. Dendooven (2010) Heavy metals concentration in plants growing on mine tailings in Central Mexico. Bioresource Technology 101: 3864-3869, https://doi.org/10.1016/j.biortech.2010.01.013 [ Links ]

González-Chávez M. C. A, R. Carrillo-González y A. S. Sánchez-López (2017) Definiciones y problemática en la investigación científica en aspectos de fitoremediación de suelos. Agroproductividad 10:3-7. [ Links ]

González-Dávila O., J. M. Gómez-Bernal and E. A. Ruíz-Huerta (2012) Plants and soil contamination with heavy metals in agricultural areas of Guadalupe, Zacatecas, Mexico. In: Environmental contamination. J. K. Srivastava (ed.). InTech. Rijeka, Croacia. pp:37-50. [ Links ]

Guo Z., Y. Gao, X. Cao, W. Jiang, X. Liu, Q. Liu, … and Q. Wang (2019) Phytoremediation of Cd and Pb interactive polluted soils by switchgrass (Panicum virgatum L.). International Journal of Phytoremediation 21:1486-1496, https://doi.org/10.1080/15226514.2019.1644285 [ Links ]

Hassan S. E., M. Hijri and M. St-Arnaud (2013) Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. New Biotechnology 30:780-787, https://doi.org/10.1016/j.nbt.2013.07.002 [ Links ]

Hazrat A., E. Khan and M. A. Sajad (2013) Phytoremediation of heavy metals - Concepts and applications. Chemosphere 19:869-881, https://doi.org/10.1016/j.chemosphere.2013.01.075 [ Links ]

Hernández-Acosta E., E. Mondragón-Romero, D. Cristóbal-Acevedo, J. E. Rubiños-Panta y E. Robledo-Santoyo (2009) Vegetación, residuos de mina y elementos potencialmente tóxicos de un jal de Pachuca, Hidalgo, México. Revista Chapingo. Serie Ciencias Forestales y del Ambiente 15:109-114. [ Links ]

Hernández-Silva G., R. García-Martínez, S. Solís-Valdez, S. Martínez-Trinidad, I. Mercado-Sotelo, M. Ramírez-Islas, … y G. Solorio-Munguía (2012) Presencia del Hg total en una relación suelo-planta-atmósfera al sur de la Sierra Gorda de Querétaro, México. TIP Revista Especializada en Ciencias Químico-Biologicas 15:5-15. [ Links ]

INEGI, Instituto Nacional de Estadística y Geografía (2010) La Minería en México 2010. Serie Estadísticas Sectoriales Número 24. Instituto Nacional de Estadística y Geografía. Aguascalientes, México. 156 p. [ Links ]

Jeddi K. and M. Chaieb (2018) Evaluation of the potential of Erodium glaucophyllum L. for phytoremediation of metal-polluted arid soils. Environmental Science and Polluttion Research International 25:36636-36644, https://doi.org/10.1007/s11356-018-3561-2 [ Links ]

Ji L. Y., W. W. Zhang, D. Yu, Y. R. Cao and H. Xu (2012) Effect of heavy metal-solubilizing microorganisms on zinc and cadmium extractions from heavy metal contaminated soil with Tricholoma lobynsis . World Journal of Microbiology and Biotechnology 28:293‐301, https://doi.org/10.1007/s11274-011-0819-y [ Links ]

Juárez-Santillán L. F., C. A. Lucho-Constantino, G. A. Vázquez-Rodríguez, N. M. Cerón-Ubilla and R. I. Beltrán-Hernández (2010) Manganese accumulation in plants of the mining zone of Hidalgo, Mexico. Bioresource Technology 101:5836-5841, https://doi.org/10.1016/j.biortech.2010.03.020 [ Links ]

Khalid N., A. Masood, A. Noman, M. Aqeel and M. Qasim (2019) Study of the responses of two biomonitor plant species (Datura alba & Ricinus communis) to roadside air pollution. Chemosphere. 235:832-841, https://doi.org/10.1016/j.chemosphere.2019.06.143 [ Links ]

Koźmińska A., A. Wiszniewska, E. Hanus-Fajersk and E. Muszyńska (2018) Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant Biotechnology Reports 12:1-14, https://doi.org/10.1007/s11816-017-0467-2 [ Links ]

Levresse G., G. Lopez, J. Tritlla, E. Cardellach L., A. Carrillo C., E. Mascuñano S. and R. Corona-Esquivel (2012) Phytoavailability of antimony and heavy metals in arid regions: the case of the Wadley Sb district (San Luis, Potosí, Mexico). Science of the Total Environment 427-428:115-125, https://doi.org/10.1016/j.scitotenv.2012.04.020 [ Links ]

Liu W., J. Liu, M. Z. Wu, Y. Li, Y. Zhao and S. R. Li (2009) Accumulation and translocation of toxic heavy metals in winter wheat (Triticum aestivum L.) growing in agricultural soil of Zhengzhou, China. Bulletin of Environmental Contamination and Toxicology 82:343-347, https://doi.org/10.1007/s00128-008-9575-6 [ Links ]

Ma L. Q., K. M. Komar, C. Tu, W. Zhang, Y. Cai and E. D. Kennelley (2001) A fern that hyperaccumulates arsenic. A hardy, versatile, fastgrowing plant helps to remove arsenic from contaminated soils. Nature 409:579, https://doi.org/10.1038/35054664 [ Links ]

Machado-Estrada B., J. Calderón, R. Moreno-Sánchez and J. S. Rodríguez-Zavala (2013) Accumulation of arsenic, lead, copper, and zinc, and synthesis of phytochelatins by indigenous plants of a mining impacted area.Environmetal Science and Pollution Research 20:3946-3955, https://doi.org/10.1007/s11356-012-1344-8 [ Links ]

Maiti S. K. and S. Jaiswal (2008) Bioaccumulation and translocation of metals in the natural vegetation growing on fly ash lagoons: a field study from Santaldih thermal power plant, West Bengal, India. Environmental Monitoring Assessment 136:355-370, https://doi.org/10.1007/s10661-007-9691-5. [ Links ]

Martínez-Trinidad S., G. Hernández-Silva, J. Martínez-Reyes, G. Solorio-Munguía, S. Solís-Valdez, M. E. Ramírez-Islas and R. García-Martínez (2013) Total mercury in terrestrial systems (air-soil-plant-water) at the mining region of San Joaquín, Queretaro, Mexico. Geofisica Internacional 52:43-58, https://doi.org/10.1016/S0016-7169(13)71461-2 [ Links ]

Mauricio G. A., J. J. Peña C. and M. Maldonado V. (2010) Isolation and characterization of hexavalent chromium-reducing rhizospheric bacteria from a wetland. International Journal of Phytoremediation 12:317-334. https://doi.org/10.1080/15226510902968118 [ Links ]

Mireles A., C. Solıs, E. Andrade, M. Lagunas-Solar, C. Pina and R. G. Flocchini (2004) Heavy metal accumulation in plants and soil irrigated with wastewater from Mexico City. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms219:187-190, https://doi.org/10.1016/j.nimb.2004.01.051 [ Links ]

Ngayila N., J. P. Basly, A. H. Lejeune, A. H. Botineau and M. Baudu (2007) Myriophyllum alterniflorum DC., biomonitor of metal pollution and water quality. Sorption/accumulation capacities and photosynthetic pigments composition changes after copper and cadmium exposure. Science of Total Environment 373:564-571, https://doi.org/10.1016/j.scitotenv.2006.11.038 [ Links ]

Nithiyanantham S., J. S. Sudarsan, R. Annadurai and K. S. Kumar (2018) Heavy metal removal using different parts of Typha latifolia. Journal of Bionanoscience 12:87-91, https://doi.org/10.1166/jbns.2018.1493 [ Links ]

O’Connor D., D. Hou, Y.S. Ok, J. Mulder, L. Duan, Q. Wu, … and J. Rinklebe (2019) Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: a critical review. Environment International 126:747-761, https://doi.org/10.1016/j.envint.2019.03.019 [ Links ]

Pan P., M. Lei, P. Qiao, G. Zhou, X. Wan and T. Chen (2019) Potential of indigenous plant species for phytoremediation of metal(loid)-contaminated soil in the Baoshan mining area, China. Environmental Science and Polluttion Research International 26:23583-23592, https://doi.org/10.1007/s11356-019-05655-4 [ Links ]

Puga S., M. Sosa, A. de la Mora, C. Pinedoy y J. Jiménez (2006) Concentraciones de As y Zn en vegetación nativa cercana a una presa de jales. Revista Internacional de Contaminación Ambiental 22:75-82. [ Links ]

Prieto-Garcia F., J. Callejas H., M. Á. Lechuga, J. C. Gaytán and E. Barrado (2005) Acumulación en tejidos vegetales de arsénico proveniente de aguas y suelos de Zimapán, estado de Hidalgo, México. Bioagro 17:129-135. [ Links ]

Rajkumar M., S. Sandhya, M. N. V. Prasad and H. Freitas (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances 30:1562-1574. https://doi.org/10.1016/j.biotechadv.2012.04.011 [ Links ]

Rivera-Becerril F., L. V. Juárez-Vázquez, S. C. Hernández-Cervantes, O. A. Acevedo-Sandoval, G. Vela-Correa, E. Cruz-Chávez, … and F. de León-González (2013) Impacts of manganese mining activity on the environment: interactions among soil, plants, and arbuscular mycorrhiza. Archives of Environmental Contamination and Toxicology 64:219-227, https://doi.org/10.1007/s00244-012-9827-7 [ Links ]

Ruiz O. A., R. Carrillo-González, M. C. A. González-Chávez and R. M. Soto H. (2013) Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. Journal of Environmental Management 114:316-323, https://doi.org/10.1016/j.jenvman.2012.10.023 [ Links ]

Salas-Luevano M. A., E. Manzanares-Acuña, C. Letechipía de León and H. R. Vega-Carrillo (2009) Tolerant and hyperaccumulators autochthonous plant species from mine tailing disposal sites. Asian Journal of Experimental Science 23:27-32. [ Links ]

Salas-Luévano M. A., J. A. Mauricio-Castillo, M. L. González-Rivera, H. R. Vega-Carrillo and S. Salas-Muñoz (2017) Accumulation and phytostabilization of As, Pb and Cd in plants growing inside mine tailings reforested in Zacatecas, Mexico. Environmental Earth Sciences 76:806, https://doi.org/10.1007/s12665-017-7139-y [ Links ]

Sánchez-López A. S., R. Carrillo-González, M. C. A. González-Chávez, G. H. Rosas-Saito and J. Vangronsveld (2015) Phytobarriers: plants capture particles containing potentially toxic elements originating from mine tailings in semiarid regions. Environmental Pollution 205:33-42, https://doi.org/10.1016/j.envpol.2015.05.010 [ Links ]

Santos-Jallath J., A. Castro-Rodriguez, J. Huezo-Casillas and L. Torres-Bustillos (2012) Arsenic and heavy metals in native plants at tailings impoundments in Queretaro, Mexico. Physics and Chemistry of the Earth 37-39:10-17, https://doi.org/10.1016/j.pce.2011.12.002 [ Links ]

SEMARNAT, Secretaría de Medio Ambiente y Recursos Naturales (2010) Programa Nacional para la Prevención y Gestión Integral de los Residuos. Secretaría de Medio Ambiente y Recursos Naturales. México, D. F. 117 p. [ Links ]

Skorbiłowicz E., M. Skorbiłowicz and D. Malinowska (2016) Accumulation of heavy metals in organs of aqueous plants and its translocation with bottom sediments in Bug river (Poland). Journal of Ecological Engineering 17:295-303, https://doi.org/10.12911/22998993/63308 [ Links ]

Sotero-García A. I., Y. A. Gheno-Heredia, A. R. Martínez-Campos and T. T. Arteaga-Reyes (2016) Plantas medicinales usadas para las afecciones respiratorias en Loma Alta, Nevado de Toluca, Mexico. Acta Botanica Mexicana 114:51-68. [ Links ]

Strungaru S. A., M. Nicoara, O. Jitar and G. Plavan (2015) Influence of urban activity in modifying water parameters, concentration and uptake of heavy metals in Typha latifolia L. into a river that crosses an industrial city. Journal of Environmental Health Science and Engineering 13:5, https://doi.org/10.1186/s40201-015-0161-7 [ Links ]

Tzvetkova N. and K. Petkova (2015) Bioaccumulation of heavy metals by the leaves of Robinia pseudoacacia as a bioindicator tree in industrial zones. Journal of Environmental Biology 36:59-63. [ Links ]

Vaculík M., C. Konlechner, I. Langer, W. Adlassnig, M. Puschenreiter, A. Lux and M. Hauser (2012) Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities.Environmental Pollution 163:117-126, https://doi.org/10.1016/j.envpol.2011.12.031 [ Links ]

van der Ent A., A. J. M. Baker, R. D. Reeves, A. J. Pollard and H. Schat (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil 362:319-334, https://doi.org/10.1007/s11104-012-1287-3 [ Links ]

Wan X. M., M. Lei, Y. R. Liu, Z. C. Huang, T. B. Chen and D. Gao (2013) A comparison of arsenic accumulation and tolerance among four populations of Pteris vittata from habitats with a gradient of arsenic concentration. Science of the Total Environment 442:143-151, https://doi.org/10.1016/j.scitotenv.2012.10.056 [ Links ]

Whiting S. N., M. P. de Souza and N. Terry (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environmental Science and Technology 35:3144-3150, https://doi.org/10.1021/es001938v [ Links ]

Yabanli M., A. Yozukmaz and F. Sel (2014) Heavy metal accumulation in the leaves, stem and root of the invasive submerged macrophyte Myriophyllum spicatum L. (Haloragaceae): an example of Kadin Creek (Mugla, Turkey). Brazilian Archives of Biology and Technology 57:434-440, https://doi.org/10.1590/S1516-8913201401962 [ Links ]

Yoon J., X. Cao, Q. Zhou and L. Q. Ma (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment 368:456-464, https://doi.org/10.1016/j.scitotenv.2006.01.016 [ Links ]

Zarazúa-Ortega G., J. Poblano-Bata, S. Tejeda-Vega, P. Ávila-Pérez, C. Zepeda-Gómez, H. Ortiz-Ontiveros and G. Macedo-Miranda (2013) Assessment of spatial variability of heavy metals in metropolitan zone of Toluca valley, Mexico, using the biomonitoring technique in mosses and TXRF analysis. The Scientific World Journal 2013:426492, https://doi.org/10.1155/2013/426492 [ Links ]

Received: May 13, 2019; Accepted: December 10, 2020

* Autor de correspondencia (candy.carranza@uaslp.mx)

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License