Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista internacional de contaminación ambiental
versión impresa ISSN 0188-4999
Rev. Int. Contam. Ambient vol.22 no.3 Ciudad de México jul./sep. 2006
Artículos
DISEÑO DE UNA MATRIZ MICROENCAPSULANTE A PARTIR DE COMPUESTOS BIODEGRADABLES PARA LA ELABORACIÓN DE UN BIOINSECTICIDA
1Laboratorio de Biotecnología Ambiental. Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro s/n esq. Elías Piña, Narciso Mendoza, Reynosa 88710 Tamps, México, correo electrónico: nrosas@ipn.mx
Se diseñaron diversas matrices microencapsulantes a partir de compuestos naturales totalmente biodegradables y se evaluó su actividad fagoestimulante contra Argyrotaenia sp., un lepidóptero plaga del aguacate. Las matrices microencapsulantes se prepararon a base de un agente encapsulante de almidón de maíz modificado (Capsul®), adherentes como la goma guar, goma arábiga y gelatina y fagoestimulantes como hoja de aguacate en polvo y cáscara de aguacate en polvo. De la combinación de estos ingredientes se obtuvieron nueve mezclas en forma granular que fueron evaluadas mediante bioensayos de preferencia alimenticia con larvas neonatas de Argyrotaenia sp. Estas mostraron una mayor preferencia alimenticia hacia las matrices microencapsulantes que contienen fagoestimulantes, siendo más preferida la hoja en polvo que la cáscara en polvo. El adherente más aceptado por las larvas fue la goma arábiga ya que no causó ningún efecto negativo en la preferencia hacia la matriz. De acuerdo con el análisis estadístico, las matrices microencapsulantes más preferidas por las larvas son las siguientes: Capsul®/goma arábiga/hoja de aguacate en polvo > Capsul®/goma arábiga/cáscara de aguacate en polvo > Capsul®/goma guar/hoja de aguacate en polvo. El diseño de estas matrices microencapsulantes contribuye al desarrollo de insecticidas biológicos, como una opción amigable a la conservación del ambiente.
Palabras clave: polímeros naturales; ambiente; formulación; insecto-plaga
Several microencapsulating matrices were designed from completely biodegradable natural compounds and their feeding stimulant effect was evaluated in Argyrotaenia sp. which is an avocado lepidopteran pest. Microencapsulating matrices were prepared based on a modified corn-starch encapsulating agent (Capsul ®) with adherents such as gelatin, guar gum and Arabic gum, and powdered avocado leaves and powdered avocado rind as feeding stimulants. From the combination of these ingredients, nine types of granules were obtained and evaluated in feeding preference bioassays with neonate larvae of Argyrotaenia sp. The larvae exhibited a high feeding preference to microencapsulating matrices containing feeding stimulants, being more preferred the powdered leaves than the powdered rind. The most accepted adherent was the Arabic gum, because no negative effect was observed in the preference to the matrix. According to statistical analysis the most preferred microencapsulating matrices are as follows: Capsul®/Arabic gum/powdered avocado leaves > Capsul®/Arabic gum/ powdered avocado rind > Capsul®/guar gum/ powdered avocado leaves. The design of these microencapsulating matrices contributes to bioinsecticide development and offers an environmental-friendly option.
Key words: natural polymers; environment; formulation; insect-pest
REFERENCIAS
Allsopp, P.G. (1992). Sugars, amino acids, and ascorbic acid as phagostimulants of larvae of Antitrogus parvulus and Lepidiota negatoria (Coleoptera: Scarabaeidae). J. Econ. Entomol. 85, 106-111. [ Links ]
Bartlet, R.J.; McGuire, M.R. y Black, D.A. (1990). Feeding stimulants for the European corn borer (Lepidoptera: Pyralidae): Additives to a starch-based formulation for Bacillus thuringiensis. Environ. Entomol. 19, 182-189. [ Links ]
Bartlet, E.; Parsons, D.; Williams, I.W.H. y Clark, S.J. (1994). The influence of glucosinolates and sugars on feeding by the cabbage stem flea beetle, Psylliodes chrysocephala. Entomol. Exp. Appl. 73, 77-83. [ Links ]
Behle, R.W.; McGuire, M.R. y Shasha, B.S. (1996). Extending the residual toxicity of Bacillus thuringiensis with casein-based formulations. J. Econ. Entomol. 89, 1399-1405. [ Links ]
Brar, S.K.; Verma, M.; Tyagi, R.D. y Valéro, J.R. (2006). Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem. 41, 323-342. [ Links ]
Brewer, G.J. y Anderson, M.D. (1990). Modification of the effect of Bacillus thuringiensis on sunflower moth (Lepidopera:Pyralidae) by dietary phenols. J. Econ. Entomol. 83, 2219-2224. [ Links ]
De Luna-Santillana, E. (2002). Desarrollo de formulaciones de Bacillus thuringiensis a partir de gelatina y/o pectina y evaluación tóxica contra el gusano barrenador de la caña de azúcar Diatraea saccharalis. Tesis de Maestría en Ciencias con esp. en Microbiología. FCB. División de Estudios de Postgrado, UANL. Monterrey, N. L. México. [ Links ]
Dunkle, R.L. y Shasha, B.S. (1988). Starch encapsulated Bacillus thuringiensis: a potential new method for increasing environmental stability of entomopathogens. Environ. Entomol. 17, 120-126. [ Links ]
Dethier, V.G.; Browne, L.B. y Smith, C.N. (1960). The de-signation of chemicals in terms of the responses they elicit from insects. J. Econ. Entomol. 53, 134-136. [ Links ]
Feng, M.G.; Pu, X.P.; Ying, S.H. y Wang, Y.G. (2004). Field trials of an oil-based emulsifiable formulation of Beauveria bassiana conidia and low application rates of imidacloprid for control of false-eye leafhopper Empoasca vitis on tea in southern China. Crop Protect. 23, 489-496. [ Links ]
Gibson, D.M.; Gallo, L.G.; Krasnoff, S.B. y Ketchum, R.E. B. (1995). Increased efficacy of Bacillus thuringiensis subsp. kurstaki in combination with tannic acid. J. Econ. Entomol. 8, 270-277. [ Links ]
Gillespie, R.L.; McGuire, M.R. y Shasha, B.S. (1994). Palatability of flour granular formulations to European corn borer larvae (Lepidoptera:Pyralidae). J. Econ. Entomol. 87, 452-457. [ Links ]
Harris, J. y Dent, D. (2000). Priorities in biopesticide research and development in developing countries. CABI Publishing, pp. 1-35. [ Links ]
ICMR Bulletin (2001). Pesticide pollution: trends and perspective. Indian Council of Medical Research. India. [ Links ]
Ignoffo, C.M. y Batzer, O.F. (1971). Microencapsulation and ultraviolet protectants to increase sunlight stability of an insect virus. J. Econ. Entomol. 64, 850-853. [ Links ]
Ignoffo, C.M.; Hostetter, D.L. y Smith, D.B. (1976). Gustatory stimulant, sunlight protectant, evaporation retardant: three characteristics of a microbial insecticidal adjuvant. J. Econ. Entomol. 69, 207-210. [ Links ]
Joung, K.B. y Cóté, J.C. (2000). A review of environ-mental impacts of the microbial insecticide Bacillus thuringiensis. Horticultural R&D Centre. Technical Bulletin No. 29. [ Links ]
King, E.G. (1996). Avances recientes en la biotecnología en Bacillus thuringiensis: control de insectos y ácaros. 1a ed. U.A.N.L., pp. 13-19. [ Links ]
Lopez, J.D.; Shaver, T.N. y Lingren, P.D. (1994). Evaluation of feeding stimulants for adult Helicoverpa zea . En: Proceedings, Beltwideo Cotton Production and Research Conferences, National Cotton Council, Memphis, TN. 19, pp. 920-924. [ Links ]
Lopez, J.D.; Bull, D.L. y Lingren, P.D. (1996). Feeding of adult Helicoverpa zea (Lepidoptera: Noctuidae) on dry sucrose. J. Econ. Entomol. 89, 119-123. [ Links ]
McGuire, M.R. y Shasha, B.S. (1990). Sprayable self-encapsulating starch formulations for Bacillus thurin-giensis. J. Econ. Entomol. 83, 1813-1817. [ Links ]
McGuire, M.R.; Shasha, B.S.; Lewis, L.C.; Bartlet, R.J. y Kinney, K. (1990). Field evaluation of granular starch formulations of Bacillus thuringiensis against Ostrinia nubilalis (Lepidoptera:Pyralidae). J. Econ. Entomol. 83, 2207-2210. [ Links ]
McGuire, M.R. y Shasha, B.S. (1992). Adherent starch granules for encapsulation of insect control agents. J. Econ. Entomol. 85, 1425-1433. [ Links ]
McGuire, M.R.; Shasha, B.S.; Lewis, L.C. y Nelsen, T.C. (1994). Residual activity of granular starch-encapsulated Bacillus thuringiensis. J. Econ. Entomol. 87, 631-637. [ Links ]
McGuire, M.R.; Shasha, B.S.; Eastman, C.E. y Oloumi-Sadeghi, H. (1996). Starch- and flour-based sprayable formulations: effect on rainfastness and solar stability of Bacillus thuringiensis. J. Econ. Entomol. 89, 863-869. [ Links ]
Metcalf, R.L.; Ferguson, J.E.; Lampman, R. y Andersen, J.F. (1987). Dry cucurbitacin-containing baits for controlling diabroticite beetles (Coleoptera: Chrysomelidae). J. Econ. Entomol. 80, 870-875. [ Links ]
Morales-Ramos, L.H.; McGuire, M.R. y Galán-Wong, L.J. (1998). Utilization of several biopolymers of granular formulations of Bacillus thuringiensis. J. Econ. Entomol. 91, 1109-1113. [ Links ]
Morales-Ramos, L.H.; McGuire, M.R.; Galán-Wong, L. J. y Franco-Castro, R. (2000). Evaluation of pectin, gelatin, and starch granular formulations of Bacillus thuringiensis. Southwest. Entomol. 25, 59-67. [ Links ]
Morris, O.N.; Trottier, M.; McLaughlin, N.B. y Converse, V. (1994). Interaction of caffeine and related compounds with Bacillus thuringiensis spp. kurstaki in bertha armyworm (Lepidoptera: Noctuidae). J. Econ Entomol. 87, 610-617. [ Links ]
Potts, L. (1999). Feeding stimulants and semiochemicals as pest management tools. Consultado el 28 de febrero de 2006. http://www.colostate.edu/Depts/Entomology/courses/en507/papers_1999/potts.htm . [ Links ]
Potter, M.F. y Watson, T.F. (1983). Garbanzo bean as a potential feeding stimulant for use with a nuclear polyhedrosis virus of the tobacco budworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 76, 449-451. [ Links ]
Rausell, C.; Martínez-Ramírez, A.C.; García-Robles, I. y Real, M.D. (2001). Bacillus thuringiensis en el control de lepidópteros que constituyen plagas forestales. En: Bioinsecticidas: fundamentos y aplicaciones de Bacillus thuringiensis en el control integrado de plagas. (P., Caballero y J., Ferré, Eds.) M. V. Phytoma-España, S. L., España, pp. 233-269. [ Links ]
Rhodes, D. (1993). Formulation of biological control agents. En Exploitation of microorganisms (D.G., Jones, Ed.) Chapman and Hall. Londres, pp. 411-439 [ Links ]
Ridgway, R.L.; Illum, V.L.; Farrar, R.R. Jr.; Calvin, D.D.; Fleischer, S.J. e Inscoe, M.N. (1996). Granular matrix formulation of Bacillus thuringiensis for control of the European corn borer (Lepidoptera:Pyralidae). J. Econ Entomol. 89, 1088-1094. [ Links ]
Rosas-García, N.M.; Arévalo-Niño, K.; Galán-Wong, L.J. y Morales-Ramos, L.H. (2004). Evaluation of feeding stimulants combined with polymers to develop formulations against Diatraea saccharalis. Southwest. Entomol. 29, 153-158. [ Links ]
Shapiro, M. y Robertson, J.L. (1992). Enhancement of gypsy moth (Lepidoptera: Lymantriidae) Baculovirus activity by optical brighteners. J. Econ. Entomol. 85, 1120-1124. [ Links ]
Studdert, J.P. y Kaya, H.K. (1990). Water potential, temperature, and clay-coating of Beauveria bassiana conidia: effect on Spodoptera exigua pupal mortality in two soil types. J. Invertebr. Pathol. 56, 327-336. [ Links ]
Tamez-Guerra, P.; McGuire, M.R.; Medrano-Roldán, H.; Galán-Wong, L.J.; Shasha, B.S. y Vega, F.E. (1996). Sprayable granule formulations for Bacillus thuringiensis. J. Econ. Entomol. 89, 1424-1430. [ Links ]
Tamez-Guerra, P.; Castro-Franco, R.; Medrano-Roldán, H.; McGuire, M.R.; Galán-Wong, L.J. y Luna-Olvera, H.A. (1998). Laboratory and field comparisons of strains of Bacillus thuringiensis for activity against noctuid larvae using granular formulations (Lepidoptera). J. Econ. Entomol. 91, 86-93. [ Links ]
Tamez-Guerra, P.; McGuire, M.R.; Behle, R.W.; Hamm, J.J.; Sumner, H.R. y Shasha, B.S. (2000a). Sunlight persistence and rainfastness of spray-dried formulations of baculovirus isolated from Anagrapha falcifera (Lepi-doptera: Noctuidae). J. Econ. Entomol. 93, 210-218. [ Links ]
Tamez-Guerra, P.; McGuire, M.R.; Behle, R.W.; Shasha, B.S. y Galán-Wong, L.J. (2000b). Assessment of microencapsulated formulations for improved residual activity of Bacillus thuringiensis. J. Econ. Entomol. 93, 219-225. [ Links ]
Trujillo, A.J. (1998). Control biológico e inocuidad alimentaria. Ed. Sistema Mexicano de Control Biológico. Vedalia. 5, 1-2. [ Links ]
Recibido: Mayo de 2006; Aprobado: Octubre de 2006