Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista internacional de contaminación ambiental
versión impresa ISSN 0188-4999
Rev. Int. Contam. Ambient vol.22 no.4 Ciudad de México oct./dic. 2006
Articles
USING ELECTRICAL TECHNIQUES FOR PLANNING THE REMEDIATION PROCESS IN A HYDROCARBON CONTAMINATED SITE
1Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, San Bartolo Atepehuacan, 07730, México DF, odelgado@imp.mx
2Moscow State Geological Prospecting Academy, Geophysical Faculty, Volgina str. 9, 117485, Moscow, Russia
We confirm that electrical methods are effective tools in the characterization of oil contaminated sites, as they help to delineate the geometry of the contamination plume, and their results are useful for planning the remediation process. In this work, the results from the application of the VES method in the characterization of an oil contaminated site are presented. Electrical measurements in groundwater samples and petrophysical modeling helped to define the geoelectrical boundary between contaminated and clean zones. Highly contaminated zones are associated with the presence of free-phase hydrocarbons. By using contamination plume and limestone thickness maps some recovering drill holes were proposed for the remediation of the site by extraction of free-phase hydrocarbons.
Key words: VES method; petrophysical modeling; oil contamination; free-phase hydrocarbon; recovering drill hole
Se confirma la efectividad de los métodos eléctricos en la caracterización de sitios contaminados por hidrocarburos, ayudando a definir la pluma de contaminación, útil para planear los procesos de remediación del sitio. En este trabajo se presentan los resultados de la aplicación del método SEV en la caracterización de un sitio contaminado por hidrocarburos. Las mediciones eléctricas en muestras de agua y la modelación petrofísica ayudaron a definir la frontera geoeléctrica entre zonas contaminadas y no-contaminadas. Las zonas con máxima contaminación están asociadas con la presencia de hidrocarburos en fase libre en el subsuelo. A partir de los mapas de plumas de contaminación y del espesor de las rocas calizas, se proponen varios pozos de recuperación de hidrocarburos en fase libre para la remediación del sitio.
Palabras clave: método SEV; modelación petrofísica; contaminación por hidrocarburos; hidrocarburos en fase libre; pozo de recuperación
REFERENCES
Abdel Aal, G. Z.; Atekwana, E. A.; Slater, L. D. and Atekwana, E. A. (2004). Effects of microbial processes on electrolytic and interfacial electrical properties of unconsolidated sediments. Geophys. Res. Lett., 31, L12505, doi:10.1029/2004gl020030. [ Links ]
Archie, G. E. (1942). The electric resistivity logs as an aid in determining some reservoir characteristics. SPE-AIME Transactions, 146, 54-62. [ Links ]
Atekwana, E. A.; Sauck, W. A. and Werkema, D. D. Jr. (2000). Investigations of geoelectrical signatures at a hydrocarbon contaminated site. J. App. Geoph., 44, 167-180. [ Links ]
Atekwana, E.A.; Sauck, W.A.; Abdel Aal, G.Z. and Werkema, D. D. Jr (2002). Geophysical investigation of vadose zone conductivity anomalies at a hydrocarbon contaminated site: implications for the assessment of intrinsic bioremediation. Journal of Environmental & Engineering Geophysics, 7, 103-110. [ Links ]
Cassidy, D. P.; Werkema, D. D.; Sauck, W. A.; Atekwana, E. A.; Rossbach, S. and Duris, J. (2001). The effects of LNAPL biodegradation products on electrical conductivity measurements. Journal of Environmental & Engineering Geophysics, 6, 47-52. [ Links ]
Loke, M.H. and Barker, R.D. (1996a). Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys. Prosp., 44, 131-152. [ Links ]
Loke, M.H. and Barker, R.D. (1996b). Practical techniques for 3D resistivity surveys and data inversion. Geophys. Prosp., 44, 499-523. [ Links ]
Osella, A.; de la Vega, M. and Lascano, E. (2002). Characterization of a contaminant plume due to a hydrocarbon spill using geoelectrical methods. Journal of Environ-mental & Engineering Geophysics., 7, 78-87. [ Links ]
Ryjov, A.A. and Sudoplatov, A.D. (1990). The calculation of specific electrical conductivity for sandy-clayed rocks and the usage of functional cross-plots for the decision of hydro-geological problems. In "Scientific and technical achievements and advanced experience in the field of geology and mineral deposits research. Moscow, 27-41. (In Russian). [ Links ]
Sauck, W. A. (2000). A model for the resistivity structure of LNAPL plumes and their environs in sandy sediments. J. App. Geoph., 44, 151-165. [ Links ]
Shevnin, V.; Delgado-Rodríguez, O.; Mousatov, A.; Nakamura Labastida, E. and Mejía-Aguilar, A. (2003). Oil pollution detection with resistivity sounding. Geof. Intern., 42, 603-622. [ Links ]
Shevnin, V.; O., Delgado-Rodríguez; L., Fernández-Linares; H., Zegarra-Martínez; A., Mousatov and Ryjov, A. A. (2005). Geoelectrical characterization of an oil contaminated site in Tabasco, Mexico. Geof. Intern. 44, 3, 251-263. [ Links ]
Shevnin, V.; A. Mousatov, A. Ryjov and Delgado-Rodríguez O. (2006). Estimation of clay content in soil based on resistivity modeling and laboratory measurements. Geophys. Prosp. (in press ). [ Links ]
Vanhala H., Soininen H. and Kukkonen I. (1992). Detecting organic chemical contaminants by spectral induced polarization method in glacial till environment. Geophysics, 57, 1014-1017. [ Links ]
Received: June 2006; Accepted: November 2006