Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Hidrobiológica
versión impresa ISSN 0188-8897
Hidrobiológica vol.25 no.1 Ciudad de México ene./abr. 2015
Artículos
Validación de un modelo hidrodinámico y calidad del agua para el Río Magdalena, en el tramo adyacente a Barranquilla, Colombia
Validation of a hydrodynamic and water quality model for the Magdalena River, at the adjacent stretch of Barranquilla, Colombia
Franklin Torres-Bejarano1, Hermilo Ramírez-León2, Clemente Rodríguez Cuevas3, María Paulina Tejera González1 y María Camila Vásquez Jaraba1
1 Universidad de la Costa, calle 58 # 55-66, Barranquilla, 80020. Colombia.
2 Instituto Mexicano del Petróleo, Lázaro Cárdenas 152. México D.F., 07730. México.
3 Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, 78000. México. e-mail: frantb13@gmail.com
Recibido: 17 de octubre de 2013.
Aceptado: 26 de agosto de 2014.
Resumen
Los modelos matemáticos de calidad del agua son una herramienta de control, que contribuyen a la planificación, la prevención y toma de decisiones enfocadas al manejo de los recursos hídricos. Por ello, diferentes países, entre los cuales está Colombia, han establecido la pertinencia de su implementación para determinar el grado de asimilación de los cuerpos de agua a vertimientos de diferente índole. Por lo cual, esta investigación tuvo como objetivo simular el transporte de los contaminantes provenientes de los efluentes del corredor industrial de Barranquilla, para realizar estudios de dispersión y destino de contaminantes que permitan representar el nivel de contaminación que se tiene en el ecosistema estudiado. Para el desarrollo de este trabajo se adaptó e implementó un modelo numérico bidimensional, que consta de dos módulos y se resuelve en dos tiempos. Inicialmente se aplicó el modulo hidrodinámico que resuelve las ecuaciones de Saint Venant derivadas de Navier-Stokes-Reynolds, mediante un método Euleriano-Lagrangeano. Posteriormente se aplicó el módulo de transporte de contaminantes que resuelve la ecuación de Advección-Difusión-Reacción en su forma bidimensional, también por el método Euleriano-Lagrangeano. A través de la simulación de los vertimientos descargados al río, se describió la evolución y comportamiento de los contaminantes descargados en éste, demostrando la capacidad del modelo implementado para representar la calidad del agua en este tipo de cuerpos receptores, con condiciones hidráulicas e hidrodinámicas complejas.
Palabras clave: Calidad del agua, hidrodinámica, modelación, transporte de contaminantes.
Abstract
Water quality models are tools of control, that contribute to the planning, prevention and decision making focused on water resource management. Therefore, different countries, among which is Colombia, have established the relevance of its implementation to determine the discharges assimilation of water bodies. This is why this research aims to simulate the transport of pollutants from effluents of the industrial corridor of Barranquilla, to study the dispersion and contaminants fate to represent the pollution level in this ecosystem. To develop this work, a two-dimensional numerical model was adapted and implemented, which consists of two modules and is solved in two stages. Initially, the hydrodynamic module is applied to solve the Saint Venant equations derived from Navier-Stokes-Reynolds, using an Eulerian-Lagrangian method. After that, the contaminant transport module that solves the two-dimensional advection-diffusion-reaction equation is applied. With the simulation of river's discharges, the evolution and behavior of pollutants discharged into it was described, which demonstrate the model capability to represent the water quality in receiving bodies with complex hydraulic and hydrodynamic conditions.
Keywords: Contaminant transport, hydrodynamics, modeling, water quality.
INTRODUCCIÓN
La utilización de modelos matemáticos para simular los procesos de transporte y dispersión de los contaminantes vertidos en medios receptores, ha experimentado un auge en las últimas décadas. Esto debido a la necesidad de estudiar o evaluar la contaminación generada por las aguas vertidas y su impacto en el medio receptor, ya que afecta el desarrollo de las actividades humanas y, en general, la calidad del medio ambiente. De esta forma la modelación matemática de la calidad del agua se ha convertido en una herramienta que contribuye a la planificación integral de los recursos hídricos (James, 1993; Khandan, 2002; López et al., 2003; Restrepo et al., 2007).
Por otro lado, la necesidad de disponer de medidas de control, amparadas en las normas oficiales de calidad del agua, ha obligado a revisar muchos de los criterios tradicionalmente utilizados en la evaluación de la calidad del agua y los usos que puedan darse a los ríos. Parte importante de esta estrategia es la implementación de modelos que estudien la dispersión de contaminantes en cauces naturales y que además consideren los procesos de cambio lo más apropiadamente posible (Wainwright & Mulligan, 2004; Caviness et al., 2006; Denzer et al., 2011).
En particular, la normatividad colombiana (Decreto 3930 del 2010) establece para los aspectos mínimos del ordenamiento del recurso hídrico, "la aplicación y calibración de modelos de simulación de la calidad del agua, que permitan determinar la capacidad asimilativa de sustancias biodegradables o acumulativas y la capacidad de dilución de sustancias no biodegradables". Es por ésto que este trabajo tiene por objetivo principal adaptar y aplicar un modelo matemático para el estudio de cauces naturales, que permita representar la hidrodinámica del rio Magdalena, así como la transformación y comportamiento de los principales contaminantes en el tramo comprendido entre el puente Pumarejo y la desembocadura al mar en Bocas de Ceniza, tendiente a darle cumplimiento a lo establecido en la normatividad nacional, en lo referente al ordenamiento del recurso hídrico.
En cuanto a trabajos de modelación de la calidad del agua en el río Magdalena, existen simulaciones realizadas sobre todo en la cuenca alta (Camacho et al., 2003; Bitar & Camacho, 2005); en el tramo de río aquí estudiado, la simulaciones realizadas han sido principalmente para la determinación del transporte de sedimentos (Caicedo & Lora, 2009) y no se han realizado trabajos para estudiar la evolución de las descargas industriales presentes en la zona. Por esto, los resultados obtenidos en este trabajo son relevantes, ya que permiten hacer una reflexión sobre el estado ambiental del río, asociando los procesos hidrológicos, oceanográficos y batimétricos, con la dispersión de contaminantes presentes en la zona.
MATERIALES Y MÉTODOS
El modelo que se utilizó para el estudio de la hidrodinámica y transporte de contaminantes se denomina ANAITE/2D (Torres-Bejarano & Ramírez, 2007; Torres-Bejarano et al., 2012) y está dividido en dos partes conceptuales: un modulo hidrodinámico bidimensional, en el que se resuelven las ecuaciones de Saint-Venant, y un módulo de calidad del agua para la resolución del transporte de las sustancias disueltas y decaimiento/transformación de las mismas, a causa de los procesos físicos, químicos y biológicos. Las dos partes conceptuales están ligadas por el algoritmo general del modelo (Fig. 1).
Los procesos químicos y biológicos son controlados en alto grado por los fenómenos físicos relacionados a la hidrodinámica del cuerpo de agua, la cual determina las corrientes y niveles de mezclado que afectan la concentración de sustancias a través de procesos de transporte. Con la información hidrológica, meteorológica y batimétrica, se adaptó el modelo a la zona de interés, obteniéndose inicialmente la hidrodinámica del río, que posteriormente fue utilizada en las simulaciones del transporte de los contaminantes.
Módulo hidrodinámico (Las ecuaciones de Saint Venant). El modelo implementado en este trabajo resuelve para la hidrodinámica las ecuaciones de flujo variable del agua en lámina libre o ecuaciones bidimensionales de Saint Venant. Estas ecuaciones describen el flujo bidimensional no estacionario promediado verticalmente y representan los principios de conservación de la masa y de la cantidad de movimiento, y son obtenidas a partir de las ecuaciones de Navier-Stokes-Reynolds (N-S-R) bajo ciertas simplificaciones. Estas ecuaciones tienen una amplia aplicabilidad en el estudio de flujo variable de superficie libre. Entre otras se pueden mencionar, el flujo en canales abiertos con pendientes fuertes (Salaheldin et al., 2000), propagación de ondas de inundación de ríos (Ying et al., 2003, Chagas & Souza, 2005), flujo en roturas de presas (Mambretti et al., 2008), etc.
Estas ecuaciones, además de tener una mejor representación de la hidrodinámica en casos de régimen no permanente, con el desarrollo y evolución de la informática, ahora pueden ser resueltas con gran eficiencia y bajo costo computacional. Las ecuaciones (1), (2) y (3) muestran la forma no-conservadora de las ecuaciones de Saint-Venant.
Donde:
u= es la velocidad media del agua en la dirección del flujo (m s-1).
v= es la velocidad media del agua en la dirección transversal (m s-1).
g= es la aceleración debida a la gravedad (m s-2).
h= es la profundidad del agua (m).
vt = es el coeficiente de difusión turbulenta (m2s-1).
t= es el tiempo (s).
Sox y Soy = representan las pendientes de fondo en las direcciones x e y, respectivamente.
Sfx y Sfy= representan las pendientes de fricción en las direcciones x e y, respectivamente.
x e y= coordenadas espaciales en las direcciones x e y, respectivamente (m).
En este trabajo se realizó el tratamiento de estas ecuaciones mediante un método Euleriano-Lagrangeano, resuelto en una aproximación de segundo orden, propuesto por Torres-Bejarano et al. (2012).
Módulo de Transporte de Contaminantes (La ecuación de A-D-R). El modelo de calidad del agua, adaptado a la corriente principal del río Magdalena, simula el comportamiento y la distribución de las concentraciones de los diferentes parámetros de calidad del agua. El módulo de la calidad del agua soluciona los siguientes parámetros, agrupados de acuerdo a las propiedades físicas y químicas:
• Físicos: Temperatura, Salinidad, Conductividad Eléctrica, Sólidos Suspendidos Totales (SST).
• Químicos y biológicos: Oxígeno Disuelto (OD), Demanda Biológica de Oxigeno (DBO), Coliformes Fecales.
• Eutrofización: Amoniaco (NH3), Nitrato (NO3), Nitrógeno Orgánico (Norg), Fósforo inorgánico (fosfato, PO4), Fósforo orgánico (Porg).
La ecuación diferencial que representa el fenómeno de transporte bidimensional (es decir, integrado en la vertical) de sustancias en fluidos es:
Donde:
C= es la concentración de cualquier parámetro de calidad de agua (mg L-1)
Ex y Ey= son los coeficientes de dispersión en la dirección x e y, respectivamente (m2 s-1)
Γc = es el mecanismo de reacción específico para cada parámetro (mg L-1 s-1)
La ecuación de A-D-R también fue resuelta aplicando el método Euleriano-Lagrangeano, en donde también se establecen los requerimientos de estabilidad aplicados en la modelación de cauces naturales, definidos principalmente por el número de Courant y número difusivo.
Aunque el modelo ANAITE/2D tiene la capacidad de resolver 22 parámetros diferentes de calidad del agua (Torres-Bejarano et al., 2012), debido al alcance de este artículo, solo se presenta el término de reacción, Γc, usado para representar la transformación de los SST, la DBO y OD. El estudio de la dispersión se hace en forma determinística resolviendo la ecuación de A-D-R para cada uno de ellos, de tal forma que se puede conocer su evolución en el espacio y en el tiempo.
Modelación de sólidos suspendidos totales (SST). El comportamiento de los SST está definido matemáticamente como sigue:
Donde:
u*= Velocidad al cortante (2x10-4 - 3x10-3) (m d-1)
u*e= Velocidad cortante de erosión (m d-1)
u*d= Velocidad cortante de depositación (m d-1)
α= Constante de erosionabilidad
ws= Velocidad de caída de la partícula (m d-1)
cb= Concentración de sedimentos de fondo (gr L-1)
Modelación de la Demanda bioquímica de oxígeno (DBO) y el Oxígeno disuelto (OD). Las siguientes ecuaciones de reacción de DBO y OD representan apropiadamente los procesos que intervienen en el balance de oxigeno (Wool et al., 2006):
Donde:
aoc = Reacción oxígeno:carbón mg O2 (mg C-1)
K1D= Constante de mortalidad (d-1)
Cf= Biomasa fitoplactónica en unidades de carbón (mg C L-1)
KD= Tasa de desoxigenación (d-1)
KDBO= Constante de saturación media de OD (mg L-1)
VS3= Velocidad de sedimentación de materia orgánica (m d-1)
fDS= Fracción disuelta de la DBO Adimensional
h= Profundidad (m)
K2D= Tasa de desnitrificación (d-1)
KNO3= Constante de Michaelis para desnitrificación (mg L-1)
T= Temperatura (°C)
K2= Constante de reaireación (d-1)
Cs= Oxígeno de saturación (mg L-1)
K12= Constante de nitrificación (d-1)
KNIT= Constante de saturación media para oxígeno (mg O2L-1)
SOD= Demanda de sedimentación (g m-2 d-1)
GPI= Tasa de crecimiento de fitoplancton (d-1)
PNH3= Preferencia por el amonio Adimensional
K1R= Tasa de respiración de fitoplancton (d-1)
Las referencias completas de los términos de reacción para los otros parámetros de calidad del agua que resuelve el modelo ANAITE/2D pueden ser consultados en Torres-Bejarano et al. (2012).
Solución numérica de las ecuaciones. Dado que las ecuaciones gobernantes son de carácter hiperbólico, el modelo de flujo no permanente puede ser usado para simular tanto el flujo subcrítico como el supercrítico. Partiendo de las ecuaciones (1) a (4), a continuación se presenta en detalle la solución numérica.
Mallado. Se utiliza una malla numérica tipo Staggered Cell (Fig. 2). En esta malla se evalúan los escalares en el centro de la celda y las magnitudes vectoriales en las caras.
La advección (Método Lagrangeano). La advección es una ecuación diferencial parcial que gobierna el movimiento de una partícula ya sea de un campo vectorial o escalar, que es advectado por un campo de velocidad. La ecuación de advección no es simple de resolver numéricamente, el sistema es hiperbólico y el interés típicamente se centra en la discontinuidad de las soluciones lo cual es notoriamente difícil de manejar en los esquemas numéricos (Ramírez et al., 2005). La solución de la advección utiliza un método Lagrangeano cuyo principio de interpolación/extrapolación está basado en el método de las características. En el método de las características se asigna a cada nodo en el tiempo tn+1 una partícula que no cambia su concentración mientras se mueve a lo largo de una línea característica definida por el flujo. Se localiza su posición en el tiempo anterior tn por medio de la interpolación de los valores adyacentes a través de un valor característico, en este caso el número de Courant, la cual es asignada al nodo en tn+1; ésta es la solución del término advectivo únicamente. Debido a que estos términos son no lineales y tienen la característica de introducir oscilaciones en los resultados. Por simplicidad, se ejemplifica el método con una sola dimensión pero es análogo para dos o tres dimensiones (Fig. 3).
Suponiendo que el valor de la variable en el punto P (φnp), se puede calcular interpolando entre los valores φn i -1 y φn i de los puntos adyacentes x0 y x1 respectivamente (Rodríguez et al., 2005), si una partícula en el punto P viaja a una velocidad constante U, se desplazará una distancia x + U Δt en un tiempo t + Δt, por lo que se obtiene:
Si se aplica la fórmula de interpolación de Gregory-Newton modificada:
donde 1(P), f1, f0 y f2 son los valores en los puntos P, x1, x0, y x2 respectivamente, p es un coeficiente de ponderación que posiciona al punto P con respecto a φ in y φ i-1n. Puesto que el polinomio es de primer grado en la interpolación lineal, sólo se utilizan los dos primeros términos de la ecuación (9). Si se sustituyen los valores conocidos para los dos puntos:
Se puede observar que p es el número de Courant de la malla cuando éste es menor que la unidad. Pero cuando el número de Courant es mayor que la unidad, la línea característica se traslada varios nodos más atrás de los inferiores al punto O. Como p es un factor de ponderación entre las concentraciones más próximas al punto P, es necesario adicionarle otra variable que represente el número de nodos hacia atrás en el que se encuentra el segmento de interpolación, en este caso se designa como s.
Generalizando para cualquier número de Courant, el método de las características se plantea de la siguiente forma (Fig. 4):
Si se utiliza la notación anterior se obtiene un esquema más flexible en cuanto a la restricción de estabilidad de Courant-Frederich-Lewy (C-F-L) para la interpolación lineal:
donde α es el número de Courant en la dirección x, s es la parte entera y p la fraccionaria del mismo, por lo tanto a = s + p donde s es el número de nodos que recorre la curva característica y p es la fracción de Δx entre los nodos i-s e i-s-1.De una forma análoga si se requiere conocer el valor en el punto P en una malla en dos dimensiones la solución queda expresada tal como se muestra en la ecuación (10):
El método de solución se aplica en forma similar a los términos advectivos presentes en las ecuaciones de continuidad y de movimiento; φ = u, v y h, son los componentes de velocidad y el tirante de agua, que se obtienen por medio del método de las características en su aproximación de primer orden, de la siguiente forma:
Con la aproximación de segundo orden la solución quedó como se muestra a continuación:
donde l y m son las partes enteras de a y b respectivamente, p y q sus correspondientes partes decimales, de tal manera que a = l + p; b = m + q. El cálculo de los números de Courant para u y v es como sigue:
Donde:
α es un coeficiente de relajación con valores típicos que están entre 0 y 1. En este trabajo se utiliza un valor de 0.075.
El término de presión. Es el término que toma en cuenta las fuerzas externas en las ecuaciones, en este caso las fuerzas gravitatorias. Se resuelve con diferencias centradas de los valores de las profundidades en la malla de cálculo (Ecuaciones 15 y 16)
El término de difusión. En este trabajo el coeficiente de viscosidad turbulenta vt, fue evaluado con un modelo de orden cero o longitud de mezclado, el cual relaciona la intermitencia del flujo con los gradientes medios de velocidad a través del coeficiente vt. En este caso se utilizó el modelo bidimensional, promediado en la vertical, propuesto por Mellor & Yamada (1982):
Donde:
lm = longitud de mezclado
uf = velocidad de fricción
k = constante de von Kármán
De esta forma, los términos de difusión en x e y se resuelven respectivamente con las formulaciones siguientes:
Los análisis detallados sobre turbulencia, su interpretación y tratamiento matemático puede ser consultado en Rodríguez et al. (2005), entre otros.
La ecuación de continuidad. Expandiendo la derivada y ordenando términos en la ecuación (1), la ecuación de continuidad quedó de la siguiente forma:
donde:
Solución general para las velocidades
Requerimientos de estabilidad. Debido a que se ha usado un esquema de diferencias finitas, debe considerarse el criterio de estabilidad lineal. La selección del paso de tiempo y el espaciamiento debe satisfacer la segunda condición de Courant-Friedrichs-Lewy (CFL) para que la solución sea estable. La condición CFL para las ecuaciones bidimensionales Saint Venant se puede escribir como:
donde:
V = magnitud de la velocidad resultante (m s-1)
Descripción de la zona de estudio. Este proyecto se centró en el estudio del último tramo del rio Magdalena, específicamente desde el puente Laureano Gómez (puente Pumarejo) con coordenadas de (10° 57' 03.02" N-74° 45' 14.63" W) hasta su desembocadura, con coordenadas de (11° 06' 20.89" N-74° 51' 07.27" W). En estos se desarrolla una gran actividad portuaria, industrial, comercial y se encuentran algunos asentamientos poblacionales (Fig. 5).
Características hidráulicas del río Magdalena. El río Magdalena posee las siguientes características: el caudal medio es de 7095 m3 s-1 con valores extremos entre 1,500 y 16,000 m3 s-1. La lámina de agua posee una pendiente entre 1.2 x 10-5 y 6.3 x 10-5 para caudales entre 2,000 m3 s-1 y 10,000 m3 s-1. El ancho del cauce varía entre 500 y 750 m, cuenta con una profundidad promedio de 9 m. La velocidad del río oscila entre 0.26 y 2.16 m s-1.
La Corporación Autónoma Regional del Río Grande de la Magdalena (CORMAGDALENA), realiza levantamientos batimétricos diarios detallados de orilla-orilla, por tramos del río entre Bocas de Ceniza (K0) y el puente Pumarejo (K22) y elabora un plano mensual de las condiciones batimétricas, que son publicados en la página Web de CORMAGDALENA (http://www.cormagdalena.com.co/idehacor/).
La batimetría utilizada para la modelación fue proporcionada por CORMAGDALENA en archivos digitales de Autocad (Fig. 6), la cual fue procesada para convertir los datos a formato ASCII y manejarlos en coordenadas XYZ, que es la forma como el software de mallado requiere esta información.
Datos oceanográficos. Los datos de variación de marea para marzo de 2012 fueron obtenidos del Centro de Investigaciones Oceanográficas e Hidrográficas (CIOH), el cual tiene por objetivo generar conocimiento sobre el comportamiento de las condiciones oceanográficas y meteorológicas de las zonas costeras colombianas, a través del Sistema de Medición de Parámetros Oceanográficos y Meteorológico (SMPOM) que está conformado por estaciones meteorológicas satelitales, boyas de oleaje direccional y mareógrafos, ubicados en varios lugares de la costa Caribe y Pacífica. Toda la información medida por el CIOH se encuentra disponible desde su portal Web (http://www.cioh.org.co/).
La figura 7 muestra el comportamiento de la marea en Bocas de Ceniza para el periodo mencionado. El nivel de agua es un condicionante de la dinámica, por lo cual estos datos de marea fueron impuestos como condición de frontera en el extremo aguas abajo del modelo.
Configuración de la malla de cálculo para el Río Magdalena. Para la modelación de flujos a superficie libre fue necesario diseñar una malla de cálculo, con el fin de que en cada elemento (celda) se pudieran determinar cada una de las variables de flujo: velocidades (para la hidrodinámica) y concentraciones (para el transporte de contaminantes) en las coordenadas cartesianas.
La malla numérica se generó utilizando el software comercial Argus One (http://www.argusone.com/), que proporciona un ambiente para el usuario, donde la información geoespacial (tipo mapa) puede ser fácilmente sintetizada y generar mallas de cálculo, transformando un espacio continuo en un espacio discreto. La malla numérica utilizada para realizar las simulaciones tuvo un ΔX = ΔY = 50 m, con un refinamiento de 10 metros en la zona del dique direccional, quedando con 219 elementos en la dirección X y 310 elementos en la dirección Y, para un total de 67,890 elementos bidimensionales. La figura 8 muestra la malla numérica que mejor se ajustó a las condiciones hidrodinámicas del río Magdalena.
RESULTADOS
Simulación de la Hidrodinámica. Para este proyecto se simuló un escenario en época de secas, alimentando el modelo con información específica de marzo de 2012, en el que se realizó la campaña de medición y muestreo. Los datos iniciales introducidos al modelo se presentan en la tabla 1.
Para obtener la información hidrodinámica inicial del río Magdalena, se utilizó la batimetría obtenida para CORMAGDALENA por el Laboratorio de Ensayos Hidráulicos de las Flores de la ciudad de Barranquilla (http://www.cormagdalena.com.co/idehacor/).
El tiempo simulado fue de 5 días, correspondientes a marzo de 2012. El tiempo de integración numérica o incremento temporal, Δt, fue 2.0 s.
En la figura 9 se observa el resultado obtenido para la velocidad resultante y el comportamiento del campo de vectores de velocidad. Se hace un acercamiento a la zona de desembocadura para observar con mayor detalle el comportamiento hidrodinámico, destacándose la penetración del agua hacia la parte continental cuando se dan elevaciones altas de la marea, cambiando el sentido del flujo del río hacia aguas arriba.
Simulación del transporte de contaminantes. Como se había mencionado previamente, para el análisis de la calidad del agua en este trabajo, se analizaron la DBO, el OD y los SST. Estos parámetros fueron seleccionados por ser fundamentales para establecer la calidad del agua de un río y porque son medidos por la autoridad ambiental local en todas las descargas hechas al río Magdalena, por lo cual se contó con la caracterización de los vertimientos en el tramo estudiado.
Para simular el transporte de contaminantes y evaluar la calidad del agua en el tramo de estudio, fue necesario definir inicialmente un escenario de descargas representativo de la zona, la cual se ve influenciada por las actividades industriales y domésticas en ambos márgenes. En total fueron consideradas 23 descargas, entre las cuales se encuentran caños y descargas directas de empresas, como se muestra en la figura 10. En las siguientes secciones se presentan los resultados obtenidos para las variables ambientales seleccionadas.
El Departamento Técnico Administrativo del Medio Ambiente de Barranquilla (DAMAB), en su calidad de autoridad ambiental, tiene como responsabilidad monitorear directamente las descargas de aguas residuales de las diferentes empresas del sector industrial de la ciudad. Los parámetros que mide son: caudal de descarga, pH, temperatura, SST y DBO; por esta razón, dichos parámetros fueron utilizados como datos de entrada en este escenario, para representar las condiciones normales de operación (Tabla 2).
Simulación de la DBO y OD. En la figura 11 se aprecian las descargas puntuales y evolución de la DBO; en la figura 12, el comportamiento del OD, como respuesta de las descargas puntuales recibidas en el tramo estudiado.
Aunque en el ecosistema estudiado no existen problemas de OD ni de DBO, el mecanismo de reacción implementado para estas variables representó adecuadamente el comportamiento de estos parámetros, arrojando resultados congruentes con los obtenidos en la campaña de medición.
En la figura 13, en las zonas donde la DBO presenta un leve incremento, se ve el comportamiento contrario del oxígeno disuelto, explicado por la mayor demanda de oxígeno que se da en dicha zona. En general, se observa que en este tramo de río existe una ligera tendencia a la disminución de la DBO y un incremento del OD, siendo éste el comportamiento normal en ecosistemas acuáticos superficiales. Por lo tanto, el oxígeno disuelto, utilizado para degradación de la materia orgánica se ve compensado por los procesos de reaireación y mezclado que tiene el río. Esto es muy importante, ya que el OD es indispensable para la conservación de la vida acuática y es un indicador de la salud ambiental del ecosistema.
Simulación de los SST. La simulación de la DBO y los SST permite observar con claridad cuan apropiadamente el modelo numérico representa la evolución de las descargas, mostrando una zona de mezclado bien definida de los constituyentes modelados. Esto significa que los coeficientes de dispersión calculados por el modelo, se ajustan adecuadamente a las características del río Magdalena. Se puede apreciar también que incluso para las descargas con más altas concentraciones, las descargas no alcanzan el margen opuesto del río (Fig. 14). En la práctica esto se debe a las magnitudes del cauce, capacidad de dilución, mezclado y el transporte que tiene el río.
Calibración y verificación. La calibración es un proceso iterativo, en el cual se corre el modelo con los datos disponibles y la estimación inicial de las tasas de reacción, coeficientes de dispersión, etc. Subsecuentemente, los resultados del modelo y los datos observados o medidos son comparados, y así, los parámetros de calibración son ajustados hasta que se alcanza una concordancia razonable entre los datos del modelo y los observados.
Para verificar la calidad de la solución numérica con respecto a los datos observados, se usó la eficiencia de Nash-Sutcliffe (Horritt, 2005), dada por la ecuación (25):
φobs: Son los datos observados o medidos
φsim: Son los datos calculados por el modelo, en el mismo sitio y momento
φ: Es el promedio de los datos observados
Algunos valores sugeridos para la toma de decisiones, relacionados con los datos producidos por la eficiencia de Nash-Sutcliffe se presentan en la tabla 3 (Moriasi et al., 2007). R2 igual a uno indica un ajuste perfecto, mientras que R2 < 0.5 sugiere que el promedio de los datos observados (φ) es un mejor predictor que el modelo usado.
Con el objetivo de contar con información confiable, se realizó una campaña de medición que fue llevada a cabo desde el puente Pumarejo hasta aguas abajo de la Ciudad de Barranquilla, en la cual se tomaron mediciones in situ y se colectaron muestras de agua en diez puntos a lo largo del tramo estudiado; con los resultados del modelo se extrajo un perfil de concentración que pasa a través de los sitios de medición, para realizar la comparación con los datos observados (Fig. 15).
Se efectuó la calibración del modelo mediante la comparación de los resultados obtenidos en los diez sitios de medición con los resultados obtenidos del modelo. En esta etapa del proceso, se realizaron ajustes de parámetros que intervienen en el transporte de contaminantes, tales como las constantes de reacción y decaimiento, incluidas en los términos de reacción de cada parámetro modelado (ecuaciones 5 a 7).
La figura 16 muestra la comparación entre los datos observados y simulados; al aplicar la Eficiencia de Nash-Sutcliffe (Ec. 25) se obtiene resultados de 0.66 y 0.95 para los SST y DBO, respectivamente, mostrando una buena y muy buena correlación y ajuste entre los datos simulados y los observados en campo, es decir, los resultados del modelo son consistentes con las mediciones; por lo tanto, el modelo puede ser implementado a diferentes situaciones y escenarios en el área de estudio. Además, el modelo es capaz de reproducir adecuadamente el comportamiento de las sustancias analizadas, lo que permite dar un diagnóstico apropiado y apegado a la realidad del transporte y distribución de la concentración de contaminantes en este tramo del río Magdalena.
DISCUSIÓN
El último tramo del río Magdalena presenta una configuración compleja, en la que el río está influenciado por las descargas de los arroyos de la ciudad de Barranquilla y las industrias ubicadas en su ribera, además de la fuerte influencia ocasionada por la variación de la marea del Mar Caribe. El modelo ANAITE/2D, que trabaja en estado completamente dinámico, mostró capacidad para manejar este tipo de condiciones de frontera y forzantes, representando apropiadamente la hidrodinámica particular en este tramo del río.
Asimismo, la zona de estudio registra cambios tales como alta concentración de sólidos suspendidos y DBO, sin embargo mantiene una concentración alta de OD y un proceso de mezclado importante. Estos datos revelan una condición hidrológica alterada por la cargada actividad humana e industrial, y la descarga de aguas residuales, pero a su vez la alta capacidad de asimilación y mezcla que posee este río tan importante.
Se aplicó el método de Nash-Sutcliffe para verificar la correspondencia entre los datos simulados y medidos, con lo cual se obtuvo un buen ajuste del modelo a las condiciones observadas. Por tanto, se puede considerar que el modelo implementado es una herramienta confiable que puede ser aplicada para otros escenarios de descarga que se desee evaluar.
Uno de los logros más importantes con este trabajo, es que se dispone de una herramienta que bien puede utilizarse para el manejo y gestión del río Magdalena, ya que permite conocer y predecir el impacto de las descargas, sean estas puntuales y/o difusas, o bien constantes o intermitentes. Lo que permite realizar una planificación del cumplimiento de los estándares de calidad de las aguas, establecidos en la normatividad actual.
AGRADECIMIENTOS
Los Autores agradecen especialmente a CORMAGDALENA y al Laboratorio de Ensayos Hidráulico de las Flores, Barranquilla, por la información suministrada, ya que sin ésta no habría sido posible realizar este estudio.
REFERENCIAS
Bitar, J. D. & L. A. Camacho. 2005. Implementación de un modelo de transporte de metales pesados en el Río Magdalena tramo Girardot-Honda. Universidad de los Andes, Bogotá. Colombia. 15 p. [ Links ]
Caicedo, J. & E. Lora. 2009. Modelación matemática. De SEFLOW a MIKE 21C. In: Alvarado, M. (Ed.). Río Magdalena. Navegación marítima y fluvial (1986-2008). Ed. Fundación Universidad del Norte, Barranquilla, Colombia. 804 p. [ Links ]
Camacho, L. A., M. Díaz Granados & C. Lombana. 2003. Diseño y desarrollo de un marco jerárquico de modelación del flujo, transporte de solutos y calidad del agua para el manejo integral del río Magdalena. Seminario Internacional La Hidroinformática en la Gestión Integrada de los Recursos Hídricos. Cartagena, pp. 65-72. [ Links ]
Caviness, K. S., G. A. Fox & P. N. Deliman. 2006. Modeling the Big Black River: A Comparison of Water Quality Models. Journal of the American Water Resources Association 42 (3): 617-627. [ Links ]
Chagas, P., & R. Souza. 2005. Solution of Saint Venant's Equation to Study Flood in Rivers, through Numerical Methods. Hydrology days. pp. 205 -210. [ Links ]
Denzer, R., F. Torres-Bejarano, T. Hell, S. Frysinger, S. Schlobinski, R. Güttler & H. Ramírez. 2011. An Environmental Decision Support System for Water Issues in the Oil Industry. In: Hřebíček, J., G. Schimak & R. Denzer (Eds.). Environmental Software Systems Vol. 9, Frameworks of eEnvironment, Springer, pp. 208-216. [ Links ]
Horritt, M. S. 2005. Parameterisation, validation and uncertainty analysis of CFD models of fluvial and flood hydraulics in the natural environment. In: Bates, P. D., N. L. Stuart & R. I. Ferguson (Eds.). Computational Fluid Dynamics: Applications in Environmental Hydraulics. John Wiley and Sons. 540 p. [ Links ]
James. A. 1993. An Introduction to Water Quality Modeling. 2° Ed., John Wiley & Sons, New York. 1993. 311 p. [ Links ]
Khandan, N. N. 2002. Modeling Tools for Environmental Engineers and Scientists. CRC Press LLC, Florida. [ Links ]
López, J. A., V. Alemany, M. C. Alberola & J. M. Solano. 2003. Metodología para la calibración de modelos de calidad de aguas. Revista Ingeniería del Agua 10 (4): 501-516. [ Links ]
Mambretti, S., E. Larcan & D. VVrachien. 2008. 1D modelling of dambreak surges with floating debris. Biosystem Engineering 100 (2): 297-308. [ Links ]
Mellor, G. L. & T. Yamada. 1982. Development of a turbulence closure model for geophysical fluid problems. Geophys. Space Phys. 20: 851-875. [ Links ]
Moriasi, D. N., Arnold, J. G., Liew, M. w. Van, Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the American Society of Agricultural and Biological Engineers, 50 (3): 885-900. [ Links ]
Ramírez, H., C. Rodríguez & I. Herrera. 2005. Multilayer hydrodynamic model and their application to sediment transport in estuaries. Springer-Verlag, Lecture Notes in Computational Science Engineering. pp. 59-70. [ Links ]
Restrepo, I., L. Sánchez, A. Galvis, J. Rojas & I. Janeth. 2007. Avances en investigación y desarrollo en agua y saneamiento para el cumplimiento de las metas del milenio. Ed. Universidad del Valle. 578 p. [ Links ]
Rodríguez, C., E. Serre, C. Rey & H. Ramírez. 2005. A numerical model for shallow-water flows: dynamics of the eddy shedding. WSEAS Transactions on Environment and Development 1: 280-287. [ Links ]
Salaheldin, T. M., J. Imran & M. H. Chaudhry. 2000. Modeling of Open-Channel Flows with Steep Gradients. Ingeniería del Agua, 7 (4): 391-408. [ Links ]
Torres-Bejarano, F. & H. Ramírez. 2007. El programa ANAITE para el estudio de la dinámica y la calidad del agua en cauces naturales con pendiente suave. Revista Internacional de Contaminación Ambiental 23 (3): 115-127. [ Links ]
Torres-Bejarano, F., H. Ramírez & C. Rodríguez. 2012. A Study Case of Hydrodynamics and Water Quality Modelling: Coatzacoalcos River, Mexico. En: Hydrodynamics - Natural Water Bodies. Ed. InTech, pp.49-66. [ Links ]
Wainwright, J. & M. Mulligan 2004. Environmental Modeling: Finding Simplicity in Complexity. Chichester, England, John Wiley & Sons Ltd. 494 p. [ Links ]
Wool, T., R. Ambrose, J. Martin & E. Comer. 2006. Water Quality Analysis Simulation Program, (WASP) Version. 6.0. U.S. Environmental protection Agency. Region 4. Atlanta, GA. [ Links ]
Ying, X., S. Y. wang & A. A. Khan. 2003. Numerical Simulation of Flood Inundation Due to Dam and Levee Breach. Proceedings of ASCE World Water and Environmental Resources Congress. Philadelphia, USA. pp 1-9. [ Links ]