SciELO - Scientific Electronic Library Online

 
vol.33 número1Lista actualizada y nuevos registros de babosas marinas (Gastropoda: Heterobranchia) en el Sistema Arrecifal Lobos-Tuxpan, MéxicoCambios en el uso del suelo afectan la calidad del agua y la concentración de clorofila en arroyos tropicales índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Hidrobiológica

versión impresa ISSN 0188-8897

Hidrobiológica vol.33 no.1 Ciudad de México ene./abr. 2023  Epub 04-Dic-2023

https://doi.org/10.24275/uam/izt/dcbs/hidro/2023v33n1/gersenowies 

Articles

The effect of clearing and staining technique differentially affects morphometric and allometric analysis in fixed Chloroscombrus chrysurus (Perciformes: Carangidae) species

Efecto de la técnica de transparentación-tinción afecta diferencialmente el análisis morfométrico y alométrico en ejemplares fijados de Chloroscombrus chrysurus (Perciformes: Carangidae)

Dannya Shari Pérez Bautista1 

Jorge Ricardo Gersenowies Rodríguez1  * 
http://orcid.org/0000-0001-9377-9356

José Ariel Olvera Ramos1 

Romeo Eduardo Loya Zurita1 

1Laboratorio de Anatomía Animal Comparada, Unidad de Morfología y Función, Facultad de Estudios superiores Iztacala, Universidad Nacional Autónoma de México. Avenida de los Barrios número 1, Colonia Los Reyes Ixtacala, Tlalnepantla, Estado de México, 54090, México


Abstract

Background:

In morphometric and allometric analysis, the degree of variation attributable to non-biological causes is ignored. The effects of this variation on subsequent statistical analyzes are unknown. It is unclear whether sample conservation induces substantial variation in shape and whether such variation affects subsequent statistical inference and interpretation. Therefore, in fish skeletal studies, fish are routinely prepared for osteological studies using a common procedure known as clearing and staining, but clearing samples are frequently measured after this process. In various studies it has been determined that the fixation of fishes produces deformation, with a decrease in the size, but the effect has not been evaluated process of clearing-staining on the morphometric and allometric analysis.

Objective:

Determine the effect of the clearing and staining process on the morphometric and allometric analyses.

Methods:

Thirty-three specimens of the species Chloroscombrus chrysurus (Linnaeus, 1766) previously fixed within 10% formalin. These were measured before and after the clearing process and alizarin red S staining. Three shape analyzes were applied: morphometric analysis, deformation analysis and allometric analysis. Only the statistically significant results were used.

Results:

It was found that the procedure affected 90% of the morphometric indices, as well as 90.9% of the morphometric measurements, where 54.5% decreased and 36.4% increased. With respect to the allometric analysis, 80% of the length-length relationships remain the same.

Conclusions:

The clearing and staining process affects C. chrysurus’s morphological variation, determined by the morphometric analysis variables using morphometric and allometric methods.

Keywords: Allometry; Anatomical deformation; Clearing; Morphometry; Osteichthyes

Resumen

Antecedentes:

En la mayoría de los análisis morfométricos y alométricos se ignora el grado de variación atribuible a causas no biológicas, los efectos de esta variación en los análisis estadísticos posteriores se desconocen. No está claro si la conservación de la muestra induce una variación sustancial en la forma y si dicha variación afecta la inferencia estadística posterior. En los estudios osteológicos, los peces se preparan rutinariamente utilizando un procedimiento conocido comúnmente como transparentación-tinción. Sin embargo, las muestras se miden con frecuencia después de este procedimiento. En diversos estudios se ha determinado que la fijación de peces produce deformación, con disminución del tamaño, pero no se ha evaluado el efecto del proceso de transparentación-tinción en el análisis morfométrico y alométrico.

Objetivo:

Determinar el efecto del proceso de transparentación-tinción en la cuantificación de la variación morfológica a partir de análisis morfométricos.

Métodos:

Se utilizaron 33 especímenes de la especie Chloroscombrus chrysurus (Linnaeus, 1766), previamente fijados en formol al 10%, se midieron antes y después de ser transparentados y teñidos con rojo de alizarina “S”. Se llevaron a cabo tres análisis: análisis morfométrico, análisis de deformación y análisis alométrico. Para el reporte solo se tomaron en cuenta los parámetros estadísticamente significativos.

Resultados:

Se encontró que el procedimiento afectó el 90% de los índices morfométricos, así como el 90.9% de las medidas morfométricas, donde el 54.5% disminuyó y el 36.4% aumentó. Con respecto al análisis alométrico se obtuvo que el 80% de las relaciones longitud-longitud son iguales.

Conclusiones:

El proceso de transparentación-tinción influye en la variación morfológica de C. chrysurus y está determinada a partir del análisis de las variables morfométricas usando métodos morfométricos y alométricos.

Palabras clave: Alometría; Deformación anatómica; Morfometría; Osteichthyes; Transparentación

INTRODUCTION

Linear dimension shrinkage is a rather important concern in morphometric studies conducted on fixed specimens (Cutts, 1988; Beger, et al., 2020). Therefore, the effects of fixation are reported as limitations in numerous studies (Cutts, 1988; Beger, et al., 2020). There are few studies analyzing the dimensional change effects of fixative solutions on specimens and the effect on morphometry and allometry analysis (Cutts, 1988; Vergara-Solana et al., 2014; Sotola et al., 2019).

Formalin solution at 10% is one of the most convenient and commonly used fixative solutions used for cadaver and tissue fixation without much modification since 1893 (Brenner, 2014). Formaldehyde is an excellent fixative, disinfectant, and antiseptic; however, it causes discoloring, loss of consistency and flexibility, and represents a risk to public and environmental health (Brenner, 2014; Wolkoff & Nielsen, 2010). It is known that the preservation of linear dimensions is reduced by the fixation of the specimens, reaching 2-10% of the initial value (Parker, 1963). For instance, in the specific case of preservation of the external morphology of fish, some studies have described significant effects of preservation by freezing and long-term storage in a 10% formalin solution (Berbei-Filho et al., 2013). In contrast, others have claimed no effect on preservation (Larochelle et al., 2016) or with deformities so minimal that they don´t cause confusion between species (Vergara-Solana et al., 2014).

There is evidence that preservation produces only minor effects in different analyzes of shape variation; even using a mixture of differently preserved specimens has a relatively small effect in subsequent analyzes (Fruciano et al., 2020). In ichthyology and fisheries research, fish are routinely prepared for osteological studies using a common full-mount procedure known as clearing and staining (Dingerkus & Uhler, 1977). Samples are frequently measured after this process (Mabee & Trendler, 1996). In research on the biology of skeletal development, they also clear and stain fish to study skeletal growth (Schilling et al., 1996) and heterochrony (Strauss, 1990). Similarly, samples are often measured after clearing and staining. Although, it is well documented that fish shrink relative to their living length when fixed in formalin or ethanol (Rosenthal et al., 1978; Hjorleifsson & Klein-MacPhee, 1992), and those small specimens shrink relatively more than larger specimens (Radtke, 1989). It is unknown if clearing and dyeing affect fish length.

In an interesting investigation, Mabee et al. (1998) determine whether the process of clearing and staining has a significant effect on fish length. Repeated-length measurements were made on individual specimens of laboratory-reared Tilapia mossambica while life, after formalin fixation and ethanol storage (2 days and 30 days), and finally after clearing and staining. These results show that clearing and staining cause significant shrinkage (3-6%). In contrast to previous studies showing that small specimens shrink relatively more than larger ones when fixed in formalin or ethanol, they found that larger fish shrink relatively more than smaller ones when subsequently cleared and stained. They provide regression equations that relate cleared-and-stained lengths to fresh or fixed.

However, nothing has been done about the effect of the alizarin red “S” staining and clearing technique on the morphometric and allometric analysis. Hence, this study analyzes the effect on long-time previously fixed specimen’s morphology, issue lacking evidence but useful for several collections that usually store their specimens this way.

MATERIALS AND METHODS

Sample: Thirty-three specimens of Chloroscombrus chrysurus (Linnaeus, 1766), with a previously fixed for 23 years in a 10% formalin solution, were washed in tap water for a day (24 hours). Morphometric measurements were taken according to the Morphometric Measurements for Advanced Species Identification from the FishBase (MMASI) (Fig. 1). The morphometric measurements of all specimens were registered on the left side of the fish body. All measurements for the fish lengths were recorded in the laboratory using a digital caliper (FUMETA mod. XSW-81390102-P) with a precision of 0.01 mm. For data control, the same person takes both measures with even the same digital caliper, thus minimizing systematic error.

Figure 1 Morphometric Measurements for Advanced Species Identification from FishBase, adapted to the scheme of Chloroscombrus chrysurus. Nomenclature: Total Length (TL); Standard Length (SL); Fork Length (FL); Head Length (HL); Pre-anal Length (PAL); Pre-dorsal Length (PDL); Pre-pectoral Length (PPEL); Pre-pelvic Length (PPL); Eye Diameter (ED); Pre-orbital Length (POL); Max. Body Depth (BD). MMASI adapted from https://www.fishbase.se/identification/MorphometricsAdvanced/centimeters/index.php.  

Clearing and staining: The skin, eyes, and viscera were removed, then we cleared and stained the bone (alizarin red “S”) following the method of Hollister (1934) with modifications. This process involved staining for bone (alizarin red 0.1% in 4% KOH) for 24 hours, tissue digestion in 4% KOH for 4 to 8 weeks, depending on specimen size, clearing them in glycerin solutions (40, 60, 80 and 90 %) one day for each solution and storing them in 100% glycerin (Fig. 2). All specimens were deposited at Laboratorio de Anatomía Animal Comparada UMF-FES Iztacala-UNAM. MMASI were adapted to C. chrysurus in this study (Figure 1).

Figure 2 Specimens of Chloroscombrus chrysurus. The upper figure represents a fixed specimen, and the lower is a clearing. Scale bar: 1 cm. 

Morphometric analysis: The data of morphometric measurements were transformed into an index with the formula of Schindler and Schmidt (2006) in Microsoft Excel ® as follows:

Index= MmTL Equation () 1

Where:

Mm

morphometric measurements data,

TL

total length.

All indexes were analyzed using STATISTICAL software version 10. Then the mean and standard deviation for all the fixed and clearing specimens was carried out, followed by a paired t-test.

Deformation analysis: Microsoft Excel ® used to transform Sotola et al. (2019) equation into deformation percent as follows:

Deformation= MmCl-MmFiMmFix100Equation () 2

Where:

MmCl

morphometric measurements data of clearing specimen,

MmFi

morphometric measurements data of fixed specimen.

Deformation´s mean and standard deviation from fixed and clearing specimens were calculated using STATISTICAL version 10.0, followed by one-sample t-test.

Allometric analysis: Allometric growth of clearing and fixed specimens was calculated as a power function of TL, using the data of the measured morphometric characteristics with the following model of Froese (2006) as follows:

y=axb

where “y” is the measured character, “a” is the intercept, “x” is the TL, and “b” is the allometric growth coefficient (Fuiman, 1983). Regarding the specific morphological characteristics, the measured morphometric was compared with TL, and isometric growth was determined when b = 1 for length. Positive allometric growth was determined when b > 1, corresponding to a higher growth rate than TL, while negative allometric growth was determined when b < 1. Linear regression analysis was performed on the log transformed data according to (Zar, 2014).

Regression analyses calculated with STATISTICAL software version 10.0. Once t-tested, were contrasted to 1-value for type of allometric growth (Zar, 2014).

RESULTS

Obtaining data:

Fixed specimens. The MMASI of each fixed specimen were obtained (n = 33; TL = 107.8-148.1 mm; FL = 95.3-129.7mm; SL = 89.1-121.5 mm POL= 5.3-9.8 mm, HL= 22.4-29.9 mm, ED = 7-8.9 mm, BD = 37.4-50.5mm, PDL= 28.8-42 .8 mm; PPL = 32.5-45.2 mm; PAL = 33-44.1 mm; PPEL = 28.5-39.9 mm). A database was built in Excel ® using these measurements to obtain the different values of the morphometric indices using the equation (1) (n = 33; FL/TL = 0.8055-0.9603; SL/TL = 0.7922-0.8861; POL/TL = 0.0492-0 .0865, HL/TL = 0.2019-0.2374, ED/TL= 0.0592-0.0759, BD/TL = 0.3276-0.3801, PDL/TL = 0.2459-0.3784; PPL/TL = 0.2889-0.3539; PAL/TL = 0.2918-0.3689; PPEL/TL= 0.2403-0.2946). For each one, we obtained the mean, standard deviation, and coefficient of variation (see Table 1).

Table 1 Morphometric analysis for the Chloroscombrus chrysurus (Linnaeus, 1766) measurements. 

Fixed Clearing
Index Mean SD CV Mean SD CV T Effect
FL/TL 0.8937 0.0263 2.94 0.8805 0.0146 1.65 -3.0053***
SL/TL 0.8248 0.0226 2.74 0.7841 0.0218 2.776 -8.5549***
POL/TL 0.0643 0.0072 11.15 0.0864 0.0094 10.93 11.278***
HL/TL 0.2189 0.0085 3.88 0.1827 0.0119 6.52 -14.0531***
ED/TL 0.068 0.0047 6.92 0.0533 0.0046 8.62 -13.9622***
BD/TL 0.3546 0.0129 3.63 0.329 0.0103 3.13 -8.819***
PDL/TL 0.2905 0.0232 7.99 0.2946 0.0488 16.57 0.4641 ns
PPL/TL 0.3119 0.01729 5.52 0.2943 0.0093 3.17 -5.3845***
PAL/TL 0.3307 0.0184 5.56 0.3408 0.0152 4.47 2.4242*
PPEL/TL 0.2695 0.0101 3.75 0.2392 0.0152 6.34 -9.8879***

Nomenclature: SD = Standard deviation; CV = Variation coefficient; T = value of the t-test of Students; ns = not significant; *=p<0.05; **=p<0.01; ***=p<0.001; ↔: no change; ↑: increase; ↓: decrease; Total Length (TL); Fork Length (FL); Standard Length (SL); Pre-orbital Length (POL); Head Length (HL); Eye Diameter (ED); Max. Body Depth (BD); Pre-dorsal Length (PDL); Pre-pelvic Length (PPL); Pre-anal Length (PAL); Pre-pectoral Length (PPEL). MMASI adapted from https://www.fishbase.se/identification/MorphometricsAdvanced/centimeters/index.php

Clearing specimens. An Excel ® MMSAI database was built for each clearing specimen (n = 33; TL = 111-146.9 mm; FL = 95.5-130.5 mm; SL = 84.5-113 mm; POL = 8.6-13 mm, HL = 19.3-26.2 mm, ED = 5.5-8 mm, BD = 36.1-47.2 mm, PDL = 31-42.7 mm, PPL= 31-40.8 mm; PAL = 36.6-48.5 mm; PPEL = 24.4-37.4 mm). Equation (1) - based morphometric indices Excel ® database as follows (n = 33; FL/TL= 0.8521-0.9199; SL/TL=0.7318-0.8339; POL/TL= 0.06470-0.1048; HL/TL = 0.1623-0.2175, ED/TL = 0.0460-0.064, BD/TL = 0.3118-0.3505, PDL/TL = 0.2712-0.3163, PPL/TL = 0.2777 -0.3159; PAL/TL = 0.295-0.3718; PPEL/TL = 0.1946-0.2642); mean, standard deviation and coefficients of variation in Table 1.

Morphometric analysis. The paired student’s t-test was applied for each MMASI to verify if there were significant differences between the morphometric indices. Results and observed probability were placed in Table 1.

Deformation analysis. The deformation percentage was obtained from the MMASI using equation (2) (n = 33, % strain for; FL= -6.51% to 12.93%; SL = -8.02% to 11.41%; POL = -14.01% to 9.97%, HL = -4.08% to 95.16%, ED = -28.25% to 0%, BD = -16.99% to 9.9%, PDL = -16.59% to 29.17%, PPL = -17.46% to 15.77%, PAL = -11.85% to 23.87%, PPEL = -23.7% to 3.7). The paired student’s t-test was applied for each deformation to verify if there were significant differences. Results and observed probability were placed in Table 2.

Table 2 Deformation analysis for the morphometric measurements of Chloroscombrus chrysurus (Linnaeus, 1766). 

Morphometric measurement Deformation Mean in % SD T Effect
TL 2.53 4.5343 3.2037**
FL 1.0583 4.6521 1.3068ns
SL -2.46 5.659 -2.4939*
POL 39.12 20.6165 10.8984***
HL -14.42 5.9938 -13.8193***
ED -19.5 8.3369 -13.438***
BD -4.76 5.9992 -4.5575**
PDL 7.1642 9.7061 4.2402***
PPL -3.06 6.4295 -2.7359*
PAL 5.94 8.7626 3.893**
PPEL -8.89 7.3823 -6.9181***

Nomenclature: SD = Standard deviation; T = value of the t-test of Students; ns = not significant; *= p<0.05; **= p<0.01; ***= p<0.001; ↔= no change; ↑= increase; ↓= decrease; Total Length (TL); Fork Length (FL); Standard Length (SL); Pre-orbital Length (POL); Head Length (HL); Eye Diameter (ED); Max. Body Depth (BD); Pre-dorsal Length (PDL); Pre-pelvic Length (PPL); Pre-anal Length (PAL); Pre-pectoral Length (PPEL). MMASI adapted from https://www.fishbase.se/identification/MorphometricsAdvanced/centimeters/index.php .

Allometric analysis. Linear regression analysis was carried out on MMASI -Log transformed- fixed vs. clearing specimen´s LT values. Notably, only clearing´s Log LT vs Log PDL correlation was not significant. Student´s t-test on allometric coefficients (Zar, 2014) comparisons as follows: near 1-value denotes isometric, meaning not- significant differences; t < 0 plus significant differences, there is negative allometry and t > 0 with significant differences indicates positive allometry (Table 3).

Table 3 Allometric analysis for the morphometric measurements of Chloroscombrus chrysurus (Linnaeus, 1766), taking TL as the independent variable. 

Fixed specimens
Log TL vs a b r T Observed allometry
Log FL 0.9139 1.3472 0.8930*** -1.0414 ns Isometric
Log SL 1.0377 0.6887 0.9259*** 0.4962 ns Isometric
Log POL 0.9558 0.0790 0.4889* -0.1444 ns Isometric
Log HL 0.8362 0.4778 0.8167*** -1.5436 ns Isometric
Log ED 0.3216 1.7261 0.3506* -4.3977 ** Negative allometric
Log BD 0.9836 0.3832 0.8652*** -0.1602 ns Isometric
Log PDL 0.8094 0.7192 0.5591*** -0.8844 ns Isometric
Log PPL 0.8423 0.6606 0.7087*** -1.0468 ns Isometric
Log PAL 0.7661 1.0079 0.6691*** -1.5306 ns Isometric
Log PPEL 0.9863 0.2875 0.8564*** -0.1285 ns Isometric
Clearing specimens
Log TL vs a b r T observed allometry
Log FL 1.0833 0.5905 0.9728*** 1.7971 ns Isometric
Log SL 1.0498 0.6173 0.9173*** 0.6091 ns Isometric
Log POL 0.3562 1.8815 0.2050 ns ------ ------
Log HL 0.8616 0.3540 0.6376*** -0.7400 ns Isometric
Log ED 0.7957 0.1413 0.4985* -0.8219 ns Isometric
Log BD 0.9889 0.3468 0.8880*** -0.1208 ns Isometric
Log PDL 0.9471 0.389 0.8563*** -0.5156 ns Isometric
Log PPL 0.8718 0.5438 0.8652*** -1.4124 ns Isometric
Log PAL 0.9308 0.4744 0.7803*** -0.5166 ns Isometric
Log PPEL 0.9412 0.3165 0.6596*** -0.3051 ns Isometric

Nomenclature: a = allometric coefficient, b = y-intercept, r = correlation coefficient, T = value of the t-test of Students, ns = not significant; * p<0.05; **p<0.01; ***=p<0.001; Total Length (TL); Fork Length (FL); Standard Length (SL); Pre-orbital Length (POL); Head Length (HL); Eye Diameter (ED); Max. Body Depth (BD); Pre-dorsal Length (PDL); Pre-pelvic Length (PPL); Pre-anal Length (PAL); Pre-pectoral Length (PPEL). MMASI adapted from https://www.fishbase.se/identification/MorphometricsAdvanced/centimeters/index.php .

DISCUSSION

Non-significant index (PDL/TL; p>0.05) and Bonferroni-significant indexes (meaning two increase (POL/TL, PAL/TL; p<0.001) and seven decrease (FL/TL, SL/TL, HL/TL, ED/TL, BD/TL, PPL/TL, PPEL/TL; p < 0.001) (Table 1) have no comparison with those reported in the literature, but nonetheless, provides evidence that process of clearing and staining affects the index and, thus, identification of the species of clearing specimens when using morphometrics indexes. Interestingly, the coefficients of variation (CV) are always less than 20%, a condition considered to be typical of the morphological variation of vertebrates by several authors (Yablokov; 1974; Lander, 1977; Polly, 1998). Thus, while there are changes in the morphometric indices, the morphological variation remains within the expected values.

Respect to morphometric measurements, one showed no significant deformations (FL, p > 0.05), those of three increased significantly (TL, p < 0.05; PAL, p < 0.01; POL, p <0.001) and seven decreased significantly too SL, PPL, p < 0.05; BD, p < 0.01; HL, ED, PDL, PPEL, p < 0.001) (Table 2); these results coincide with those reports from many authors (Parker, 1963; Cutts, 1988; Sotola et al., 2019; Beger, et al., 2020) on the decrease in measurements from 2.46% to 19.5%, the increases are not previously reported, but increase in TL of 2.53% is similar to the decrease reported during fixation. However, it is observed that the clearing and staining process affects the morphometric measurements, producing a significant reduction.

The general allometry analysis aims for a general isometric growth (Log TL vs Log SL, Log TL vs Log HL, Log TL vs Log BD, Log Tl vs Log PDL, Log TL vs Log PPL, Log TL vs Log PAL, Log TL vs Log PPEL, all growths are the same between clearing specimens and fixed specimens (Table 3), an expected fact when establishing length-length relationships without shape change as reported by several authors (Moutopoulos & Stergiou, 2002; Froese, 2006; Simon & Mazlan, 2008; Shin, et al., 2022).

In the clearing specimens, one relation without correlation was presented (Log TL vs. Log POL). However, in the fixed samples an isometric growth for POL and a negative allometric growth for ED are shown. This observation where the eyes get smaller as they get larger is a phenomenon known for centuries as Haller’s rule of eye allometry. This rule states that smaller animals have larger eyes than larger ones (McMahon & Bonner, 1983). Based on the results obtained here, the clearing and staining procedure affects the allometric analysis to a lesser degree.

In conclusion, the procedure of clearing and staining with alizarin red produce a body fish morphology deformation, as revealed by the morphometric measurements analyzed. However, it affects the allometric analysis to a lesser degree. Hence, when performing morphometric analysis of long-fixed specimens cleared and stained with alizarin red “S”, care must be taken. Nonetheless, the allometric analysis provides more reliable results.

ACKNOWLEDGE

This work was carried out in the Laboratorio de Anatomía Animal Comparada of the Unidad de Morfología y Función (UMF) of the Facultad de Estudios Superiores Iztacala, UNAM.

REFERENCES

Beger, O., M. İ. Karagül, T. Koç, G. Kayan, A. Cengiz, Ş. N. Yılmaz & Z. K. Olgunus. 2020. Effects of different cadaver preservation methods on muscles and tendons: a morphometric, biomechanical, and histological study. Anatomical science international 95 (2): 174-189. DOI: 10.1007/s12565-019-00508-z [ Links ]

Berbei-Filho, W.M, U.P. Jacobina, & P.A. Martinez. 2013. Preservation effects in geometric morphometric approaches: freezing and alcohol in a freshwater fish. lchthyologycal Research 60 (3): 268-271. DOI: 10.1007/s10228-013-0339-x [ Links ]

Brenner, E. 2014. Human body preservation-old and new techniques. Journal of Anatomy 224:316-344. https://doi.org/10.1111/joa.12160 [ Links ]

Cutts A. 1988 Shrinkage of muscle fibres during the fixation of cadaveric tissue. Journal of Anatomy 160: 75-78. [ Links ]

Dingerkus, G., & L. D. Uhler. 1977. Enzyme clearing of alcian blue stained whole small vertebrates for demonstration of cartilage. Stain technology 52 (4): 229-232. DOI: 10.3109/10520297709116780 [ Links ]

Froese, R. 2006. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. Journal of applied ichthyology 22 (4): 241-253. DOI: 10.1111/j.1439-0426.2006. 00805.x [ Links ]

Fruciano, C., D. Schmidt, M. M. Ramírez Sanchez, W. Morek, Z. Avila Valle, I. Talijančić, C. Pecoraro & A. Schermann Legionnet. 2020. Tissue preservation can affect geometric morphometric analyses: a case study using fish body shape. Zoological Journal of the Linnean Society 188 (1): 148-162. DOI: 10.1093/zoolinnean/zlz069 [ Links ]

Fuiman, L. A. 1983. Growth gradients in fish larvae. Journal of fish biology 23 (1): 117-123. DOI: 10.1111/j.1095-8649. 1983.tb02886.x [ Links ]

Hjoeleifsson, E., & Klein-MacPhee, G. 1992. Estimation of live standard length of winter flounder Pleuronectes americanus larvae from formalin-preserved, ethanol-preserved and frozen specimens. Marine Ecology Progress Series. Oldendorf, 82(1), 13-19. [ Links ]

Hollister, G. 1934. Clearing and dying fishes for bone study. Zoologica 12: 89-101. DOI: 10.5962/p.203729 [ Links ]

Lander, R. 1977. On comparing coefficients of variation. Systematic Zoology 26 (2): 214-217. DOI: 10.2307/2412845 [ Links ]

Larochelle, C. R., F. A. Pickens, M. D. Burns & B. L. Sidlauskas. 2016. Long-term isopropanol storage does not alter fish morphometrics. Copeia 104 (2): 411-420. doi: 10.1643/CG-15-303 [ Links ]

Linnaeus, C. 1766. Systema naturae per regna tria naturae: secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Ed. 12. 1., Regnum Animale. 1 & 2. Holmiae [Stockholm], Laurentii Salvii. pp. 1-532 [1766] pp. 533-1327 [1767]. [ Links ]

Mabee, P. M. & T. A. Trendler. 1996. Development of the cranium and paired fins in Betta splendens (Teleostei: Percomorpha): intraspecific variation and interspecific comparisons. Journal of Morphology 227 (3): 249-287. DOI: 10.1002/(SICI)1097-4687(199603)227:3<249: AID-JMOR1>3.0.CO;2-1 [ Links ]

McMahon, T. A. & J. T. Bonner. 1983. On size and life. Scientific American Books, USA. 255 p. [ Links ]

Moutopoulos, D. K. & K. I. Stergiou. 2002. Length-weight and length-length relationships of fish species from the Aegean Sea (Greece). Journal of Applied Ichthyology 18 (3): 200-203. DOI: 10.1046/j.1439-0426.2002. 00281.x [ Links ]

Parker, R. R. 1963. Effects of formalin on length and weight of fishes. Journal of the Fisheries Board of Canada, 20(6), 1441-1455. doi: 10.1139/f63-098 [ Links ]

Polly, P.D. 1998. Variability in mammalian dentitions: size-related bias in the coefficient of variation. Biological Journal of the Linnean Society 64 (1): 83-99. DOI: 10.1111/j.1095-8312. 1998.tb01535.x [ Links ]

Radtke, R. L. 1989. Larval fish age, growth, and body shrinkage: information available from otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 46(11), 1884-1894. doi: 10.1139/f89-237 [ Links ]

Rosenthal, H., D. Kuhlmann & 0. Fukuhara. 1978. Shrinkage of newly hatched larvae of the Red Sea bream (Chrysophrys malor Temminck & Schlegel) preserved in formalin. Archiv für Fischereiwissenschaft 29: 59-63. [ Links ]

Schilling, T. F., T. Piotrowski, H. Grandel, M. Brand, C. P. Heisenberg, Y. J. Jiang, D. Beuchle, M. Hammerschmidt, D. A. Kane & C. Nusslein-Volhard. 1996. Jaw and branchial arch mutants in zebrafish I: branchial arches. Development 123 (1): 329-344. DOI: 10.1242/dev.123.1.329 [ Links ]

Schindler, I. & J. Schmidt. 2006. Review of the mouthbrooding Betta (Teleostei, Osphronemidae) from Thailand, with descriptions of two new species. Zeitschrift für Fischkunde 8 (1/2): 47-69. [ Links ]

Shin, M. G., Y. W. Ryu, Y. H. Choi & S. K. Kim. 2022. Morphological and Allometric Changes in Anguilla japonica Larvae. Biology 11 (3): 407. DOI: 10.3390/biology11030407 [ Links ]

Simon, K. D. & A. G. Mazlan. 2008. Length-weight and length-length relationships of archer and puffer fish species. The Open Fish Science Journal 1 (1): 19-22. DOI: 10.2174/1874401X00801010019 [ Links ]

Sotola, V. A., C. A. Craig, P. J. Pfaff, J. D. Maikoetter, N. H. Martin & T. H. Bonner. 2019. Effect of preservation on fish morphology over time: Implications for morphological studies. PloS one 14 (3): e0213915. DOI: 10.1371/journal.pone.0213915 [ Links ]

Strauss, R. E. 1990. Heterochronic variation in the developmental timing of cranial ossifications in poeciliid fishes (Cyprinodontiformes). Evolution, 44(6), 1558-1567. https://doi.org/10.1111/j.1558-5646.1990.tb03846.x [ Links ]

Vergara-Solana, F. J., García-Rodríguez, F. J., & De La Cruz-Agüero, J. 2014. Effect of preservation procedures on the body shape of the golden mojarra, Diapterus aureolus (Actinopterygii: Perciformes: Gerreidae), and its repercussions in a taxonomic study.Acta Ichthyologica et Piscatoria, 44 (1): 65-70. DOI: 10.3750/AIP2014.44.1.08 [ Links ]

Wolkoff, P. & G. D. Nielsen. 2010. Non-cancer effects of formaldehyde and relevance for setting an indoor air guideline. Environment International 36 (7): 88-799. DOI: 10.1016/j.envint.2010.05.012 [ Links ]

Yablokov A.V. 1974. Variability of Mammals. New Delhi: Amerind Publishing Company, New Delhi. 1-22 p. [ Links ]

Zar, J. H. 2014. Comparing simple linear regression equations. Biostatistical analysis, 5 edition, USA. 387-345p. [ Links ]

Received: November 07, 2022; Accepted: March 13, 2023

*Corresponding author: Jorge Ricardo Gersenowies Rodríguez: e-mail: ajrgersenowies@gmail.com

To quote as: López-Valdez, M. L., H. S. Espinosa-Pérez & A. L. Báñez. Pérez Bautista, D. S., J. R. Gersenowies Rodríguez, J. A. Olvera Ramos & R. E. Loya Zurita. 2023. The effect of clearing and staining technique differentially affects morphometric and allometric analysis in fixe Chloroscombrus chrysurus (Perciformes: Carangidae) species. Hidrobiológica 33 (1): 51-57.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License