SciELO - Scientific Electronic Library Online

 
vol.30 número2Interacción de la co-inoculación de Claroideoglomus claroideum con fosfohongos saprófitos: efecto en el desarrollo de plántulas micropropagadas de papa nativaFunción de los hongos micorrícicos y las bacterias solubilizadoras de fosfatos en la absorción de elementos esenciales y metálicos en las plantas en suelos contaminado con metales pesados índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista Chapingo. Serie horticultura

versión On-line ISSN 2007-4034versión impresa ISSN 1027-152X

Rev. Chapingo Ser.Hortic vol.30 no.2 Chapingo may./jul. 2024  Epub 20-Mayo-2024

https://doi.org/10.5154/r.rchsh.2023.05.003 

Scientific articles

Distribution, eco-climatic characterization and modelling of suitable soursop cultivation zones in Mexico

Claudia P. Grijalva-Verdugo1 
http://orcid.org/0000-0003-4483-4667

Jesús Rubén Rodríguez-Núñez1 
http://orcid.org/0000-0002-6294-3050

Juan Manuel Villarreal-Fuentes2 
http://orcid.org/0000-0003-2617-5303

Iran Alia-Tejacal3 
http://orcid.org/0000-0002-2242-2293

Eduardo Campos-Rojas4 

Carlos A. Núñez-Colín1  * 
http://orcid.org/0000-0002-9912-6097

1Universidad de Guanajuato, Programa de Ingeniería en Biotecnología. Mutualismo núm. 303, Col. La Suiza, Celaya, Guanajuato, C. P. 38060, MÉXICO.

2Universidad Autónoma de Chiapas, Facultad de Ciencias Agrícolas. Entronque Carretera Costera y Huehuetán Pueblo, Huehuetán, Chiapas, C. P. 30660, MÉXICO.

3Universidad Autónoma del Estado de Morelos, Facultad de Ciencias Agropecuarias. Av. Universidad núm. 1001, Col. Chamilpa, Cuernavaca, Morelos, C. P. 62210, MÉXICO.

4Universidad Autónoma Chapingo, Departamento de Fitotecnia. Carretera México-Texcoco km 38.5, Chapingo, Texcoco, México, C. P. 56230, MÉXICO.


Abstract

Soursop (Annona muricata L.) is a tropical fruit tree highly valued for its organoleptic characteristics, and is the most important Annonaceae species in Mexico. This study aimed to generate maps of the natural geographic and eco-climatic distribution where soursop grows in Mexico, and to model potential zones according to climate change scenarios estimated for 2050. The natural distribution model showed that this species is found in most tropical and some subtropical areas of Mexico. This fruit tree grows in three different eco-climatic regions (two tropical and one temperate): Aw1 (found on the edges of the Balsas basin, and in the south, southeast and central north of the Veracruz region, as well as in the center of the Mexican Pacific coast), Am (north and central south of the Veracruz region, and the Yucatán peninsula) and C(w0) (east of the Trans-Mexican Volcanic Belt). Modelling of suitable climate adaptation zones showed that the Pacific coast of Mexico and Veracruz, as well as some areas of the Balsas basin and the Yucatán peninsula, have potential for soursop cultivation. Likewise, in the scenario of global climate change, beneficial effects on the adaptation of this species are predicted.

Keywords Annona muricata L.; Annonaceae; geographic information systems; climate modeling; tropical fruit trees

Resumen

La guanábana (Annona muricata L.) es un frutal tropical altamente apreciado por sus características organolépticas, y es la especie de Annonaceae más importante en México. El presente estudio tuvo como objetivo generar mapas de la distribución geográfica natural y eco-climática donde se desarrolla la guanábana en México, y modelar las zonas potenciales de acuerdo con los escenarios del cambio climático estimado para 2050. El modelo de distribución natural mostró que esta especie se encuentra en la mayoría de las zonas tropicales y algunas subtropicales de México. Este frutal se desarrolla en tres regiones eco-climáticas diferentes (dos tropicales y una templada): Aw1 (se encuentra en los bordes de la cuenca del Balsas, y en el sur, sureste y centro norte de la región veracruzana, así como en el centro de la costa pacífica mexicana), Am (norte y centro sur de la región veracruzana, y la península de Yucatán) y C(w0) (oriente del eje volcánico Transmexicano). El modelado de las zonas adecuadas de adaptación climática mostró que la costa pacífica mexicana y veracruzana, así como algunas zonas de la cuenca del Balsas y la península de Yucatán, tienen potencial para cultivar guanábana. Asimismo, en el escenario del cambio climático global se pronostican efectos benéficos en la adaptación de esta especie.

Palabras clave Annona muricata L.; Annonaceae; sistemas de información geográfica; modelación climática; frutales tropicales

Introduction

The Annonaceae family is composed of approximately 108 genera and more than 2,400 species, being one of the families that contributes most to the biodiversity of many tropical and subtropical regions around the world (Chatrou et al., 2012). Within this family, the genus Annona stands out, to which important fruit crops belong, with most of the species growing in tropical climates (Segura et al., 2012; Escobedo-López et al., 2019). In Mexico, the most important Annona species is soursop (Annona muricata L.), with a national production of 30,790.70 t in 2019, from 3,176.44 ha harvested, with a production value of $11,586,710.61 USD (Servicio de Información Agroalimentaria y Pesquera [SIAP], 2022). Additionally, in recent years, anticancer effects have been reported with the use of leaf extracts from this species (Grijalva-Verdugo et al., 2022).

According to Villaseñor (2016), in one of the most recent national floristic lists, guanabana is a species not native to Mexico. However, de la Cruz-Chacón et al. (2016), when specifically discussing the Annonaceae family in Mexico, consider soursop to be native to the country, because it has a wide diversity of phenotypes in the producing regions. In addition, it is possible to find it naturally in forests (Escobedo-López et al., 2019). Therefore, it is necessary to know its distribution and the different climatic variants where this species grows, and to identify possible cultivation regions considering climate change scenarios. This is to establish a plan for the protection of its genetic resources, as well as the collection, characterization and evaluation of germplasm for use in breeding programs (Zagaja, 1988).

This is possible with the use of various Geographic Information Systems (GIS) methods (Jones et al., 2002; Guarino et al., 2002; Núñez-Colín & Goytia-Jiménez, 2009; Hijmans et al., 2012; Scheldeman & van Zonneveld, 2011; Núñez-Colín et al., 2017; Rodríguez-Núñez et al., 2021); therefore, the objectives of this research were to model the possible natural distribution of soursop in Mexico, carry out an eco-climatic characterization and model the possible cultivation regions considering climate change scenarios using GIS.

Materials and methods

The information sources for the desk-based analyses were made up of data from 33 projects registered in the SNIB-CONABIO database (Comisión Nacional para el Conocimiento y uso de la Biodiversidad, 2015; Appendix Table), the Tropicos.org database (Missouri Botanical Garden, 2021; 63 data) and the optimal climate requirements of soursop registered in the FAO Eco-Crop database (Food and Agriculture Organization of the United Nations, 2007; Table 1).

Table 1 Bioclimatic parameters assumed by the Eco-Crop model for soursop (Annona muricata L.). 

Parameter Value
Minimum growing season 180 days
Maximum growing season 365 days
Killing temperature 0 °C
Minimum temperature (no damage) 13 °C
Optimal minimum temperature 20 °C
Optimal maximum temperature 30 °C
Maximum temperature (no damage) 36 °C
Minimum precipitation 800 mm
Optimal minimum precipitation 1,200 mm
Optimal maximum precipitation 2,200 mm
Maximum precipitation 4,200 mm

Source: Bioclimatic requirements for the Eco-Crop model according to the FAO crop database (2007).

All analyses used maps with biogeographic regions of Mexico (Figure 1) described by Morrone et al. (2017). This was to be able to analyze the results based on similar bioclimatic regions and not on political entities.

Figure 1 Biogeographic regions of Mexico according to Morrone et al. (2017)

Natural distribution

To model the natural distribution of soursop, the FloraMap 1.03 program was used, which specializes in modelling probabilistic distribution maps based on accession data (Jones & Gladkov, 1999). The program uses eigenvectors of climatic variables (temperature, isothermality and precipitation) and the transformation of precipitation data. To match the values with the temperature scale, the Rain power A transform (Jones & Gladkov, 1999) was used, with a value of 0.1. In addition, six principal components explaining 94.92 % of the total variance were used to generate the maps (Jones & Gladkov, 1999; Jones et al., 2002). Probability maps were calculated without weighting, i.e. all coefficients of the climatic variables evaluated were equal to 1. All FloraMap maps were obtained with a minimum probability of 75 % of locating specimens. To obtain a probabilistic natural distribution map, all the data mentioned above were used.

Eco-climatic characterization

With the use of Floramap 1.03, and considering the same parameters used for the natural distribution, the eco-climatic characterization was carried out through cluster analysis of the accessions using Ward's method (Ward, 1963) and Euclidean distances to identify accessions that grow in similar climates, as a characterization of the different eco-climatic regions where soursop grows. With this, a probabilistic map of each group was generated to determine the different climatic zones where the species is distributed. The climate of each group was characterized according to the Köppen classification modified by García (2004).

Modelling potential and under climate change scenarios

This modelling was carried out with DIVA-GIS package version 7.5 (Hijmans et al., 2012). Distribution models of suitable climate zones for soursop were calculated using the Eco-Crop model, which considers regions that meet the bioclimatic parameters required for the adaptation of each species with a resolution of 2.5 min. The program establishes as excellent regions those that fit practically all the optimal crop growing conditions, and the region classification decreases according to the absence of bioclimatic parameters, up to the area where the species could no longer grow (Hijmans & Graham, 2006; FAO, 2007) (Table 1). In addition, two scenarios were considered. In the first, called current potential zones, actual climate data accumulated over 50 years (1950-2000) were used, taken from the Worldclim (WC) climate database (Hijmans et al., 2005). In the second, named potential future zones, the data were modelled considering a doubling of the atmospheric CO2 concentration to simulate the global climate change scenario, which is used in the CCM3 model to calculate the climate database (Govindasamy et al., 2003).

Both models were compared to locate the most suitable areas for establishing in vivo germplasm banks, mother orchards and evaluation plots for soursop (Hijmans et al., 2001; Hijmans & Graham, 2006), this accordance with the optimal climatic characteristics for its development (FAO, 2007). Only climatic data related to temperature and precipitation were considered in the analyses, and no other factors such as wind or soil due to the complexity of the models; moreover, the variables considered are more significant and allow for better prediction (Jones et al, 2002; Hijmans et al., 2012).

Results

Natural distribution

The general natural distribution of soursop in Mexico showed that the species is distributed with a high percentage of probability in most of the tropical regions of Veracruz and the Yucatán peninsula. With lower probability/Less likely, the species is distributed in the northern, central and some southern points of the Mexican Pacific coast, the Balsas basin region, the southern areas of the Chihuahuan desert and the Sierra Madre Occidental, and the Sierra Madre del Sur and Chiapas highlands region (Figure 2). Most of the soursop's natural range is below the Tropic of Cancer (Figure 2).

Figure 2 Modelling of the natural distribution of soursop (Annona muricata L.) in Mexico. 

Eco-climatic characterization

According to the dendrogram of the cluster analysis (Figure 3), it was found that soursop grows in three different climatic groups: two with a completely tropical climate and one with a temperate climate (Garcia, 2004), designated as Aw1 (intermediate sub-humid tropical with summer rains), Am (humid tropical with summer rains) and C(w0) (sub-humid temperate with summer rains, being the driest for this subtype), for groups 1, 2 and 3, respectively.

Figure 3 Dendrogram of soursop (Annona muricata L.) accessions based on their climatic characteristics using Ward's method. 

When comparing the climograms (Figure 4), it is evident that group 3 showed lower rainfall and temperature, typical of humid and sub-humid tropical climates. This group showed winter temperatures below 13 °C, which is the minimum with no damage, but did not reach the killing temperature of the species (Table 1). Groups 1 and 2 contrasted only in the distribution of precipitation, but not in its annual amount, as group 1 had drier winters, although both are rainy in summer.

Figure 4 Climograms of the three eco-climatic groups of soursop in Mexico: a) group 1 (climate Aw1), b) group 2 (climate Am), c) group 3 (climate C(w0)), d) comparison of the average temperature of the three groups, e) comparison of the temperature differential of the three groups and f) comparison of the monthly precipitation of the three groups. 

Group 1, which corresponds to climate Aw1, is naturally distributed with greater probability along the edges of the Balsas basin, and in the south, southeast and central north Veracruz region, as well as in the center of the Mexican Pacific coast (Figure 5a), although it also has a good probability in other areas of the Mexican Pacific coast, the Yucatán peninsula and southern Tamaulipas.

Figure 5 Modelling of the distribution of the three eco-climatic groups of soursop (Annona muricata L.) in Mexico: a) group 1, b) group 2 and c) group 3. 

Group 2, which corresponds to climate Am, is distributed only in the north and central south of the Veracruz region and the Yucatán peninsula, within the latter with greater probability in the Caribbean zone (Figure 5b). Group 3, which corresponds to climate C(w0), has an extremely restricted distribution in the east of the Trans-Mexican Volcanic Belt, since it has an atypical climate for soursop (Figure 5c).

Modelling potential and under climate change scenarios

The Eco-Crop model, using the WorldClim climate database, showed that the current areas with excellent climates for soursop cultivation are almost the entire Pacific coast of Mexico and Veracruz, and some areas of the Balsas basin and the Yucatán peninsula. On the other hand, other areas of the Balsas basin and the Yucatán peninsula, as well as the south-southwest of the Chihuahuan desert, west of the Trans-Mexican Volcanic Belt and the Chiapas highlands have more restricted climates (Figure 6a).

Figure 6 Modelling of suitable zones for soursop (Annona muricata L.) cultivation in Mexico using the Eco-Crop model: a) WorldClim climate database and b) CCM3 model climate database to estimate the climate change scenario. 

With the same model, but with the CCM3 database - as a global climate change model - it was observed that the Mexican Pacific coast and the Veracruz region maintain, or even expand, the areas with excellent climates for soursop cultivation. Likewise, there is an expansion of areas in the Balsas basin, the Yucatán peninsula, the Chiapas highlands and the southern Chihuahuan desert, the last with some limitations (Figure 6b).

Discussion

The general natural distribution coincided with the conditions reported for soursop, which grows mainly in tropical climates -type A according to the Köppen classification modified by García (2004) - (Chatrou et al., 2012; Segura et al., 2012; Andrés-Agustín & Segura-Ledesma, 2014; Escobedo-López et al., 2019). However, considering the data presented in the present work, the distribution could be extended to some subtropical and even temperate areas. De la Cruz-Chacón et al. (2016) note that there is a high variability of soursop-producing areas in Mexico, which are located in regions with a high probability of finding this species naturally. Other authors point out that most orchards use seeds for soursop propagation, which could explain the high variability of germplasm (Evangelista-Lozano et al., 2003; Terán-Erazo et al., 2019; Villarreal-Fuentes et al., 2020).

On the other hand, the three eco-climatic groups, being contrasting in some of their environmental conditions, indicate that soursop may have developed variants, resulting in different gene pools (Dobzhansky, 1970). This strengthens the hypothesis put forward by de la Cruz-Chacón et al. (2016), who argue that soursop can be considered native to Mexico, not as a center of origin, but as a center of diversification according to Vavilov's (1951) treatises.

Eco-climatic group 3, although it has a very restricted distribution, presents climatic patterns similar to cherimoya (Annona cherimola Mill.). Rodríguez-Núñez et al. (2021) report three eco-climatic groups for this fruit tree: C(m)(w), (A)C(e’) and (A)C(e); i.e. one temperate and two subtropical, more similar to the temperate group. Custard apple is one of the Annonaceae best adapted to temperate climates (Andrés-Agustín & Segura-Ledesma, 2014), contrary to what was reported for soursop, which was considered almost exclusive to tropical climates (Chatrou et al., 2012; Segura et al., 2012; Escobedo-López et al., 2019). Group 3 accessions could be a good source of genes for resistance to chilling injury in the postharvest of soursop, as has been reported for other fruit trees such as guava (Psidium guajava L.), where tropical and temperate gene pools have also been evaluated (Cázares-Sánchez et al., 2010; Mondragón-Jacobo et al., 2010). Additionally, it would be interesting to evaluate the profile of nutraceutical substances reported for soursop (Villarreal-Fuentes et al., 2020; Grijalva-Verdugo et al., 2022), since it has only been studied in fruits from tropical areas (Grijalva-Verdugo et al., 2022).

Modelling of suitable regions for soursop cultivation using Eco-Crop highlights as areas with excellent conditions the current producing areas of the country and the places where ex situ and in vivo germplasm banks have been established (Andrés-Agustín & Segura-Ledesma, 2014; Villarreal-Fuentes et al., 2020; Terán-Erazo et al., 2022). Additionally, global climate change-according to the CCM3 database-will not affect the adaptation of the crop in current areas, which could even be expanded to regions where there are currently climatic constraints.

Conclusions

Three climatic groups were found for soursop cultivation in Mexico, where one of them -which has a restricted distribution - is temperate and had not been previously reported.

The climatic variability of soursop adaptation leads to the inference that to conserve germplasm, genotypes from all three climatic groups need to be represented.

Modelling of suitable growing areas showed that climate change will not affect the current soursop growing regions in Mexico, and even beneficial effects on the adaptation of this species are predicted.

It is recommended to grow soursop in the regions of the Balsas basin and the Yucatán peninsula due to its high adaptation potential, in order to increase the production of this crop in Mexico.

Acknowledgments

The authors would like to thank the Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) for providing data from the Red Mesoamericana de Biodiversidad (REMIB). This research was funded by the SAGARPA-CONACYT fund through project 266891 and by the Universidad de Guanajuato through project CIIC 197/2023.

References

Andrés-Agustín, J., & Segura-Ledesma, S. (2014). Conservación y uso de los recursos genéticos de Annonaceae en México. Revista Brasileira de Fruticultura, 36, 118-124. https://doi.org/10.1590/S0100-29452014000500014 [ Links ]

Cázares-Sanchez, E., Núñez-Colín, C. A., Domínguez-Álvarez, J. L., Luna-Morales, C. C., Rojas-Martínez, R. I., & Segura-Ledesma, S. (2010). Potential biogeographic distribution of guava (Psidium guajava L.) in Mexico. Acta Horticulturae, 849, 55-62. https://doi.org/10.17660/ActaHortic.2010.849.5 [ Links ]

Chatrou, L. W., Erkens, R. H. J., Richardson, J. E., Saunders, R. M. K., & Fay, M. F. (2012). The natural history of Annonaceae. Botanical Journal of the Linnean Society, 169(1), 1-4. https://doi.org/10.1111/j.1095-8339.2012.01242.x [ Links ]

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). (2015). Base de datos electrónicos SNIB-CONABIO. [ Links ]

De la Cruz-Chacón, I., Castro-Moreno, M., Luna-Cázares, L. M., & González-Esquinca, A. R. (2016). La familia Annonaceae Juss. en México. Lacandonia, 10(2), 71-82. [ Links ]

Dobzhansky, T. (1970). Genetics of the evolutionary process. Columbia University. [ Links ]

Escobedo-López, D., Campos-Rojas, E., Rodríguez-Núñez, J. R., Alia-Tejacal, I., & Núñez-Colín, C. A. (2019). Priority areas to collect germplasm of Annona (Annonaceae) in Mexico based on diversity and species richness indices. Genetic Resources and Crop Evolution, 66, 401-414. https://doi.org/10.1007/s10722-018-0718-2 [ Links ]

Evangelista-Lozano, S., Cruz-Castillo, J. G., Pérez-González, S., Mercado-Silva, E., & Dávila-Ortiz, G. (2003). Producción y calidad frutícola de guanábanos (Annona muricata L.) provenientes de semilla de Jiutepec, Morelos, México. Revista Chapingo Serie Horticultura, 9(1), 69-79. https://doi.org/10.5154/r.rchsh.2001.05.027 [ Links ]

Food and Agriculture Organization of the United Nations (FAO). (2007). Data sheet of Annona muricata. https://gaez.fao.org/pages/ecocrop-find-plantLinks ]

García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen. Universidad Nacional Autónoma de México. [ Links ]

Govindasamy, B., Duffy, P. B., & Coquard, J. (2003). High-resolution simulations of global climate, part 2: effects of increased greenhouse cases. Climate Dynamics, 21(5), 391-404. https://doi.org/10.1007/s00382-003-0340-6 [ Links ]

Grijalva-Verdugo, C. P., Rodríguez-Núñez, J. R., Núñez-Colín, C. A., Aguirre-Mancilla, C. L., Montoya-Anaya, D., Villarreal-Fuentes, J. M., Balois-Morales, R., & Rodríguez-Carrillo, M. G. (2022). Total polyphenolics, antioxidants, and cytotoxic activity of infusions from soursop (Annona muricata) leaves from two Mexican regions. Agronomía Colombiana, 40(2), 300-310. https://doi.org/10.15446/agron.colomb.v40n2.102621 [ Links ]

Guarino, L., Jarvis, A., Hijmans, R. J., & Maxted, N. (2002). Geographic Information Systems (GIS) and the conservation and use of plant genetic resources. In: Engels, J. M. M., Ramanatha-Rao, V., Brown, A. H. D., & Jackson, M. T. (Eds.), Managing Plant Genetic Diversity (pp. 387-404). International Plant Genetic Resources Institute (IPGRI). [ Links ]

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965-1978. https://doi.org/10.1002/joc.1276 [ Links ]

Hijmans, R. J., Guarino, L., Cruz, M., & Rojas, E. (2001). Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genetic Resources Newsletters, 127, 15-19. http://www.diva-gis.org/docs/pgr127_15-19.pdfLinks ]

Hijmans, R. J., Guarino, L., & Mathur, P. (2012). DIVAGIS : version 7.5. Lizard Tech, Inc. and the University of California. [ Links ]

Hijmans, R. J., & Graham, C. H. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12(12), 2272-2281. https://doi.org/10.1111/j.1365-2486.2006.01256.x [ Links ]

Jones, P. G., & Gladkov, A. (1999). FloraMap: a computer tool for predicting the distribution of plants and other organisms in the wild , version 1.0. Centro Internacional de Agricultura Tropical. [ Links ]

Jones, P. G., Guarino, L., & Jarvis, A. (2002). Computer tools for spatial analysis of plant genetic resources data: 2. FloraMap. Plant Genetic Resources Newsletters , 130, 1-6. https://hdl.handle.net/10568/65806Links ]

Missouri Botanical Garden. (2021, December 04). GBIF data portal. http://data.gbif.org/datasets/resource/12084Links ]

Mondragón-Jacobo, C., Toriz-Ahumada, L. M., & Guzmán-Maldonado, S. H. (2010). Generation of pink-fleshed guavas to diversify commercial production in central Mexico. Acta Horticulturae, 849, 333-340. https://doi.org/10.17660/ActaHortic.2010.849.39 [ Links ]

Morrone, J. J., Escalante, T., & Rodríguez-Tapia, G. (2017). Mexican biogeographic provinces: Map and shapefiles. Zootaxa, 4277(2), 277-279. https://doi.org/10.11646/zootaxa.4277.2.8 [ Links ]

Núñez-Colín, C. A., Alia-Tejacal, I., Villarreal-Fuentes, J. M., Escobedo-López, D., Rodríguez-Núñez, J. R., & Peña-Caballero, V. (2017). Distribution, eco-climatic characterization and potential cultivation zones of mamey sapote in Mexico. Revista Chapingo Serie Horticultura , 23(2), 83-96. https://doi.org/10.5154/r.rchsh.2016.05.014 [ Links ]

Núñez-Colín, C. A., & Goytia-Jiménez, M. A. (2009). Distribution and agroclimatic characterization of potential cultivation regions of physic nut in Mexico. Pesquisa Agropecuaria Brasileira, 44(9), 1078-1085. https://doi.org/10.1590/S0100-204X2009000900002 [ Links ]

Rodríguez-Núñez, J. R., Campos-Rojas, E., Andrés-Agustín, J., Alia-Tejacal, I., Ortega-Acosta, S. A., Peña-Caballero, V., Madera-Santana, T. J., & Núñez-Colín, C. A. (2021) Distribution, eco-climatic characterisation, and potential growing regions of Annona cherimola Mill. (Annonaceae) in Mexico. Ethnobiology and Conservation, 10, 05. https://doi.org/10.15451/ec2020-10-10.05-1-17 [ Links ]

Scheldeman, X., & van Zonneveld, M. (2011). Manual de capacitación en análisis espacial de diversidad y distribución de plantas. Bioversity International. https://hdl.handle.net/10568/104630Links ]

Segura, S., Andrés, J., Fresnedo, J., Zavala, F., Marroquín, L., Vidal, E., Nicolás, M., Vidal, L., Bolívar, N., Castañeda, A., González, A., Barrios, S., & Carmona, A. (2012). Where do we go with Annona in Mexico? Acta Horticulturae, 948, 79-90. https://doi.org/10.17660/ActaHortic.2012.948.8 [ Links ]

Servicio de Información Agroalimentaria y Pesquera (SIAP). (2022, August 10). Cierre de la producción agrícola 2019. https://nube.siap.gob.mx/cierreagricola/Links ]

Terán-Erazo, B., Alia-Tejacal, I., Balois-Morales, R., Juárez-López, P., López-Guzmán, G. G., Pérez-Arias, G. A., & Núñez-Colín, C. A. (2019). Caracterización física, química y morfológica de frutos de guanábana (Annona muricata L.). Agrociencia, 53(7), 1013-1027. https://www.agrociencia-colpos.org/index.php/agrociencia/article/view/1860Links ]

Terán-Erazo, B., Alia-Tejacal, I., Marisal-García, K. P., Núñez-Colín, C. A., Guillén-Sánchez, D., Juárez-Pérez, P., López-Martínez, V., Avonce-Vergara, N., Villarreal-Fuentes, J. M., Sainz-Aispuro, M. J., & Campos-Rojas, E. (2022). Quality and phytochemical content in soursop fruits (Annona muricata L.) from Tecomán, Colima, Mexico. Acta Horticulturae, 1340, 21-25. https://doi.org/10.17660/ActaHortic.2022.1340.3 [ Links ]

Vavilov, N. I. (1951). Origin, variation, immunity and breeding of cultivated plants. The Chronica Botanica Co. https://doi.org/10.2134/agronj1952.00021962004400020016x [ Links ]

Villarreal-Fuentes, J. M., Alia-Tejacal, I., Hernández-Salvador, M. A., Hernández-Ortiz, E., Marroquín Agreda, F. J., Núñez-Colín, C. A., & Campos-Rojas, E. (2020). In situ characterization of soursop (Annona muricata L.) in the Soconusco region, Chiapas, Mexico. Revista Chapingo Serie Horticultura , 26(3), 189-205. https://doi.org/10.5154/r.rchsh.2020.05.008 [ Links ]

Villaseñor, J. L. (2016). Checklist of the native vascular plants of Mexico. Revista Mexicana de Biodiversidad, 87(3), 73-122. https://doi.org/10.1016/j.rmb.2016.06.017 [ Links ]

Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236-244. https://doi.org/10.2307/2282967 [ Links ]

Zagaja, S. W. (1988). Exploración de recursos genéticos. In: Moore, J. N., & Janick, J. (Eds.), Métodos genotécnicos en frutales (pp. 3-12). AGT Editor. [ Links ]

APPENDIX

Projects and sources of Annona muricata L. data used in the analyses from the SNIB-CONABIO database, Mexico.

Project Source Project citation Number of data used
AA002 E008 K004 P026 U021 Lorea-Hernández, F., Peredo, M., & Durán, C. (2014). Actualización de
las bases de datos del Herbario XAL. Fase III. Instituto de Ecología, A. C.
30
AA009 AA009 Guadarrama-Olivera, M. A. (2006). Actualización de las bases de datos
de las colecciones de plantas vasculares y macromicetos del herbario
de la UJAT. Universidad Juárez Autónoma de Tabasco.
2
AC002 AC002 Zamora-Crescencio, P., Sánchez-González, M. C., & Aragón-Axomulco,
L. (2005). Formación del banco de datos del herbario (UCAM).
Universidad Autónoma de Campeche. Centro de Investigaciones Históricas y Sociales.
3
AE013 V057 Comisión Nacional para el Conocimiento y Uso de la Biodiversidad
(CONABIO). (2003). Catálogo electrónico de especímenes depositados en el
Herbario de la Universidad de Texas en Austin, Fase IV. The University of Texas.
1
B123 B123 Diego-Pérez, N. (1997). Lista florística de la Costa Grande del
estado de Guerrero. Universidad Nacional Autónoma de México.

Bases de datos SNIB-CONABIO proyecto No. B123.
1
BC002 BC002 Cuevas-Sánchez, J. A. (2006). Computarización de la base de datos del Banco
Nacional de Germoplasma Vegetal - fase 2. Universidad Autónoma Chapingo.
36
BC003 BC003 Chávez-Rendón, C. (2006). Actualización e incremento del banco de datos de
la colección de herbario del Jardín Etnobotánico de Oaxaca. Centro Cultural
Santo Domingo. Bases de datos SNIB-CONABIO proyecto No. BC003.
1
BC007 BC007 Fernández-Nava, R., Reyes-Toledo, B., & Casales-Gómez, M. (2007).
Computarización del Herbario ENCB, IPN. Fase IV. Base de datos de la familia
Pinaceae y de distintas familias de la clase Magnoliopsida depositadas
en el Herbario de la Escuela Nacional de Ciencias Biológicas-IPN.
2
BK031 BK031 Bonilla-Barbosa, J. R. (2007). Flora acuática vascular y de zonas
inundables del área de protección de flora y fauna Laguna de
Términos, Campeche, México. Universidad Autónoma del Estado
de Morelos. Centro de Investigaciones Biológicas.
3
CC010 V050 CC010 Escobar-Ocampo, C., & Castillo-Hernández, J. J. (2007). Sistematización
de la colección entomológica y actualización de la colección del herbario CHIP
del Instituto de Historia Natural y Ecología (IHNE), Chiapas. Secretaría de
Medio Ambiente, Vivienda e Historia Natural. Bases de datos SNIB-
CONABIO Plantas, proyectos No. CC010, V050_plantas y H297.
3
DC013 DC013 Vázquez-Torres, M., & Bojórquez, L. H. (2011). Base de datos computarizada
del herbario CIB, Instituto de Investigaciones Biológicas, Universidad Veracruzana.
Universidad Veracruzana. Instituto de Investigaciones Biológicas.
2
EC018 EC018 Valdez-Hernández, M. (2013). Base de datos del Herbario
CIQR de El Colegio de la Frontera Sur, unidad Chetumal.
El Colegio de la Frontera Sur. Unidad Chetumal.
13
gbif 12084 Missouri Botanical Garden (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/12084, 2012-12-04)
3
gbif 14128 California Academy of Sciences, CAS Botany (accessed through GBIF
data portal, http://data.gbif.org/datasets/resource/14128, 2012-12-04)
1
gbif 14346 Field Museum of Natural History Seed Plant Collection (accessed through
GBIF data portal, http://data.gbif.org/datasets/resource/14346, 2012-12-04)
4
gbif 247 University of Arizona Herbarium (accessed through GBIF data
portal, http://data.gbif.org/datasets/resource/7900, 2012-12-04)
2
H146 H146 Flores-Guido, J. S. (1999). Actualización del banco de datos florístico de la
Península de Yucatán (BAFLOPY). Universidad Autónoma de Yucatán.
2
HA005 BC006 EC009 Pérez-Farrera, M. A., Martínez-Camilo, R., Martínez-Meléndez,
N., & Martínez-Meléndez, M. (2011). Integración de bases de datos,
actualización y sistematización de la colección de flora del Herbario Eizi
Matuda (HEM). Universidad de Ciencias y Artes de Chiapas.
8
HA016 BA006 DC002 HA016 U009 Hernández-Aguilar, S. (2014). Depuración de la colección y base de datos del
Herbario CICY. Fase IV. Centro de Investigación Científica de Yucatán A.C.
19
INFyS2010 INFyS. 2010 CONAFOR. (2011). Base de datos del Inventario Nacional
Forestal y de Suelos 2004 - 2009. Comisión Nacional
Forestal y de Suelos, Zapopan, Jalisco, México
20
J084 J084 Batis-Muñoz, A. I., Alcocer-Silva, M. I., Gual-Díaz, M., Sánchez-
Dirzo, C., & Vázquez-Yanes, C. (1999). Árboles mexicanos
potencialmente valiosos para la restauración ecológica y la
reforestación. Universidad Nacional Autónoma de México.
8
L138 L138 Guadarrama-Olivera, M. A. (2000). Flora de la reserva de
la biósfera de los Pantanos de Centla, en el estado de Tabasco,
México. Universidad Juárez Autónoma de Tabasco.
1
L255 L255 Rendón-Aguilar, B., & Núñez-Farfán, J. (1999). Flora útil del Municipio
de la Huerta, Jalisco. Universidad Nacional Autónoma de México.
2
L289 L289 Téllez-Valdés, O., & Martínez, J. (2000). Base de datos de la
flora de la Reserva de la Biosfera Chamela-Cuixmala, Jalisco,
México. Universidad Nacional Autónoma de México.
1
Mobot Mobot Base de datos del Herbario del Jardín Botánico de Missouri, EUA (2005). 12
P140 P140 Gutiérrez-Garduño, M. V. (1999). Sistematización del Herbario
Nacional Forestal Biól. Luciano Vela Gálvez. Secretaría de
Agricultura, Ganadería y Desarrollo Rural. Instituto Nacional
de Investigaciones Forestales Agrícolas y Pecuarias.
4
P143 P143 Carnevali-Fernández, G., & Durán, R. (2009). Depuración de la
Colección y del Banco de datos del Herbario CICY. Fase III. Centro
de Investigación Científica de Yucatán A.C. Bases de datos
SNIB-CONABIO Proyectos No. DC002, BA006 y U009.
15
Q017 J097 Rzedowski, J., & Zamudio, S. (2001). Etapa final de la captura y catalogación
del Herbario del Instituto de Ecología, AC. Centro Regional del Bajío.
3
SI-BMM SI-BMM Gual, D. M., Rendón, C. A., Alamilla, F. L., Cifuentes, R. P., &
Lozano, R. A. (2013). Bosque mesófilo de montaña de México. Comisión
Nacional para el Conocimiento y Uso de la Biodiversidad.
2
T015 T015 Dávila-Aranda, P., & Lira-Saade, R. (2001). La flora útil de dos comunidades
vindígenas del Valle de Tehuacán-Cuicatlán: Coxcatlán y Zapotitlán de las Salinas,
Puebla. Universidad Nacional Autónoma de México. Bases de datos
SNIB2013-CONABIO proyectos No. T015, Q014-Flora útil y P091-Flora útil.
1
U008 L188 Jiménez-Ramírez, J., & Martínez-Gordillo, M. (2003). Fusión
y actualización de las bases de datos del Herbario de la Facultad
de Ciencias, UNAM (FCME), Guerrero.
Universidad Nacional Autónoma de México. Bases de datos SNIB-CONABIO proyectos
No. U008, R031-Municipio H. Castillo, L188, L092 y E004.
1
U011 U011 Santana-Michel, F. J., Cuevas-Guzmán, R., & Guzmán-Hernández,
L. (2003). Actualización de la base de datos sobre la flora de la Reserva
de la Biósfera Sierra de Manantlán, Jalisco-Colima, México. Universidad
de Guadalajara. Centro Universitario de la Costa Sur. Bases
de datos SNIB-CONABIO proyectos No. U011 y A007.
2
U048 U048 Guízar-Nolazco, E. (2004). Banco de datos florísticos del
Herbario CHAP. Universidad Autónoma Chapingo.
2

Received: May 09, 2023; Accepted: February 27, 2024

*Corresponding author: carlos.nunez@ugto.mx, tel. +52 46 15 98 59 22 ext. 6360.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License