SciELO - Scientific Electronic Library Online

 
vol.40 número1Programación integral del riego en maíz en el norte de Sinaloa, MéxicoPatrón de crecimiento estacional de pastos nativos, en un bosque de encino, en el Estado de México, México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Agrociencia

versión On-line ISSN 2521-9766versión impresa ISSN 1405-3195

Agrociencia vol.40 no.1 Texcoco ene./feb. 2006

 

Agua-Suelo-Clima

Efecto de la estructura del suelo sobre el desarrollo radical del maíz con dos sistemas de labranza

Esteban S. Osuna-Ceja1 

Benjamín Figueroa-Sandoval2 

Klaudia Oleschko3 

María de L. Flores-Delgadillo2 

Mario R. Martínez-Menes2 

Félix V. González-Cossío2 

1Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, INIFAP. 20600. Km 32.5. Carretera Aguascalientes-Zacatecas. Pabellón de Arteaga. Aguascalientes, México. (esosuna@yahoo.com.mx).

2Campus Montecillo. Colegio de Postgraduados. 56230. Montecillo, Estado de México.

3Instituto de Geología. Departamento de Edafología. Universidad Autónoma de México. Ciudad Universitaria. 76230. México, D. F.


Resumen

La estructura del suelo (arreglo geométrico y topológico de los poros del suelo que se forman entre los agregados, y su estabilidad en tiempo y espacio) es una propiedad básica considerada como uno de los principales atributos de la calidad del suelo. En este estudio se analizaron dos sistemas de labranza de largo plazo bajo riego: tradicional (LT) y de conservación (LC), con especial énfasis en el comportamiento de propiedades como densidad aparente (ρb), la pendiente de la curva de retención de humedad en su punto de inflexión (S) y contenido de materia orgánica (MO), así como su relación con el sistema radical del maíz (Zea mays). Se efectuaron pruebas comparativas considerando algunos parámetros de suelo (ρb, MO, y S) y planta (biomasa, y longitud de raíz). Los resultados muestran que los parámetros ρb, MO y S utilizados para medir la calidad física del suelo, demostraron que los sistemas de labranza causan cambios en la estructura del mismo y por ende en su calidad. El sistema de LC propicia una mejor calidad e incrementa el contenido de MO en el suelo. Los valores de S son menores en LT, lo que indica que tiene menor capacidad de retener agua en comparación con LC. Se encontró una alta correlación entre S y longitud de raíz, significativa al agrupar los datos de acuerdo con el tipo de manejo. Por tanto, S se podría usar como un indicador para evaluar el impacto de las prácticas agrícolas sobre la calidad del suelo.

Palabras clave: Zea mays; labranza de conservación; sistema radical

Abstract

The soil structure (the geometric and topological arrangement of the soil pores, which are formed between the aggregates, and its stability over time and space) is a basic property, considered one of the main attributes of soil quality. In this study, two longterm irrigated tillage systems were analyzed: traditional (LT) and conservation (LC) with special emphasis on properties such as bulk density (ρb), slope of the water retention curve at its inflection point (S) and content of organic matter (OM), as well as their relationship to the corn root system (Zea mays). Comparative tests were conducted considering soil (ρb, OM and S) and plant (biomass and root length) parameters. The results show that the parameters ρb, OM and S used to measure physical quality of the soil showed that the tillage systems cause changes in soil structure and, thus, in its quality. The LC system favors better quality and increases the OM content in the soil. The values of S are lower in LT, indicating that it has lower capacity for water retention compared with LC. A high correlation between S and root length was found, significant when data were grouped by type of management. Therefore, S could be used as an indicator to evaluate the impact of agricultural practices on soil quality.

Key words: Zea mays; conservation tillage; root systems

Texto completo disponible sólo en PDF.

LITERATURA CITADA

Ahuja, L. R., F. Fiedler, G. H. Dunn, J. G. Benjamin, and A. Garrison. 1998. Changes in soil water retention curves due to tillage and natural reconsolidation. Soil Sci. Soc. Am. J. 62: 1228-1233. [ Links ]

Betz, C. L., R. R. Allmaras, S. M. Copeland, and G. W. Randall. 1998. Least limiting water ranger traffic and long-term tillage influence in a Webster soil. Soil Sci. Soc. Am. J. 62: 1384-1393. [ Links ]

Bruand, A., I. Cousin, B. Nicoulland, O. Duval, and J. C. Begon 1996. Backscattering electron scanning images for analysing soil compaction around roots. Soil Sci. Soc. Am. J. 60: 895-901. [ Links ]

Brück, H., B. Piro, B. Sattelmacher, and W. A. Payne. 2003. Spatial distribution of roots of pearl millet on sandy soils of Niger. Plant and Soil 256: 149-159. [ Links ]

Bushamuka, V. N., and R. W. Zobel. 1998. Differential genotypic and root type penetration of compacted soil layers. Crop Sci. 38 (3):776-781. [ Links ]

De Freitas, P. L., R. W. Zobel, and V. A. Snyder. 1999. Corn root growth in soil columns with artificially constructed aggregates. Crop Sci. 39: 725-730. [ Links ]

Dexter, A. R. 2001. The key to soil function. Institute of Soil Science and Plant Cultivation. Poland. 14 p. [ Links ]

Dexter, A. R. 2004a. Soil physical quality. Part I. Theory, effect of soil texture, density, and organic matter, and effect on root growth. Article in press, Geoderma. [ Links ]

Dexter, A. R. 2004b. Soil physical quality. Part II. Friability, tillage, tilth and hard-setting. Article in press, Geoderma. [ Links ]

Dexter, A. R. 2004c. Soil physical quality Part. III. Unsaturated hydraulic conductivity and general conclusion about S-theory. Article in press, Geoderma. [ Links ]

Dexter, A. R., and D. W. Tanner. 1973. The response of unsaturated soils to isotropic stress. J. Soil Sci. 24. 491-502. [ Links ]

Dexter, A. R., and N. R. A. Bird. 2001. Methods for predicting the optimum and the range of soil water contents for tillage based on the water retention curve. Soil & Till. Res. 57: 203-212. [ Links ]

Eamus, D., X. Chen., G. Kelley., y L.B. Hutley. 2002. Root biomass and root fractal analyses of an open Eucalyptus forest in savanna of north Australia. Aust. J. Bot. 50: 31-41. [ Links ]

Follett, R. F. 2001. Soil management concepts and carbon sequestration in cropland soils. Soil & Till. Res. 61: 77-92. [ Links ]

Franzluebbers, A. J., G. W. Langdale, and H. H. Schomgerg. 1999. Soil carbon, nitrogen and aggregation in response to type and frequency of tillage. Soil Sci. Soc. Am. J. 63: 349-355. [ Links ]

Franzluebbers, A. J., R. L. Haney, C. W. Honeycutt, H. H. Schomgerg , and F. M. Hons. 2000. Flush of carbon dioxide following rewetting of dried soil relates to active organic pools. Soil Sci. Soc. Am. J. 64: 613-623. [ Links ]

Gale, W. J., C. A. Cambardella, and T. B. Bailey. 2000a. Surface residue-and root-derived carbon in stable and unstable aggregates. Soil Sci. Soc. Am. J. 64: 196-201. [ Links ]

Gale, W. J., C. A. Cambardella, and T. B. Bailey . 2000b. Root-derived carbon and the formation and stabilization of aggregates. Soil Sci. Soc. Am. J. 64: 201-207. [ Links ]

Groleau-Renaud, V., S. Plantureux, and A. Guckert. 1998. Influence of plant morphology on root exudation of maize subjected to mechanical impedance in hydroponic condictions. Plant Soil 201: 231-239. [ Links ]

Herrick, J. E., M. A. Weltz, J. D. Reeder, G. E. Schuman, and J. R. Simanton. 1999. Rangeland soil erosion and soil quality: role of soil resistance, resilience and disturbance regime. Soil Water Cons. Soc. [ Links ]

Huang, B., R. R. Duncan, and R. N. Carrow. 1997. Drough-resistance mechanisms of seven warm-season turfgrass under surface soil drying: II Root aspects. Crop Sci. 37(6): 1863-1869. [ Links ]

Janzen, H. H., C. A. Campbell, R. C. Izaurralde, B. H. Ellert, N. Juma, W. B. McGill, and R. P. Zentner. 1998. Management effects on soil C storage on the Canadian prairies. Soil & Till. Res. 47: 189-203. [ Links ]

Jury, W. A., W. R. Gardner, and W. H. Gardner. 1991. Soil Physics. John Wiley & Sons. New York. 328 p. [ Links ]

Katou, H., K. Miyaji, and T. Kubota. 1987. Susceptibility of undisturbed soils to compression as evaluated from the changes in the soil water characteristic curves. Soil Sci. Plant Nutr. 33 (4): 539-554. [ Links ]

Kay, B. D. 1999. Soil structure. In: Handbook of Soil Science. Sumner, M. E. (ed). CRC Press Inc., Boca Raton. FL. USA. pp: 229-276. [ Links ]

Mualem, Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Res. 12: 513-522. [ Links ]

Osuna, C. E. S., S. P. Ramírez, y F. E. Villagrana. 2000. Desarrollo de sistemas de producción sostenible para uso y conservación de suelo y agua en las zonas áridas y semiáridas del Norte-Centro de México. Cuaderno de Trabajo, SIHGO. CONACYT. 45 p. [ Links ]

Six, J.,E. T. Elliott, and K. Paustian. 2000. Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy. Soil Sci. Soc. Am. J. 64: 1042-1049. [ Links ]

Tsutsumi, D., K. Kosugi, and T. Mizuyama. 2003. Root-system development and water-extraction model considering hydrotropism. Soil Sci. Soc. Am. J. 67: 387-401. [ Links ]

Tubeileh, A., V. Groleau-Renaud, and S. Plantureux. 2003. Effect of soil compaction on photosynthesis and carbon pertitioning within a maize-soil system. Soil & Till. Res. 71: 151-161. [ Links ]

Van Genuchten, M. Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44: 892-898. [ Links ]

Van Genuchten, M. Th., F. J. Leij, and S. R. Yates. 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. USDA, US Salinity Laboratory, Riverside, C.A. US Environmental Protection Agency, Document EPA/600/2-91/065. [ Links ]

Vaz, C. M. P., L. H. Bassoi, and J. W. Hopmans. 2001. Contribution of water content and bulk density to field soil penetration resistance as measured by a combined cone penetrometer-TDR probe. Soil & Till. Res. 60: 35-42. [ Links ]

Vogel, H. J., and K. Roth. 2001. Quantitative morphology and network representation of soil pore structure. Adv. Water Resour. 24: 233-242. [ Links ]

Vrugt, J. A., J. W. Hopmans, and J. Šimunek. 2001. Calibration of a two-dimensional root water uptake model. Soil Sci. Soc. Am. J. 65: 1027-1037. [ Links ]

Walkley, A., and T. A. Black. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 63: 251-264. [ Links ]

Williams S. M., and R. R. Weil. 2004. Crop cover root channels may alleviate soil compaction effects on soybean crop. Soil Sci. Soc. Am. J. 68: 1403-1409. [ Links ]

Zobel, R. W. 1991. Root growth and development. In: The Rhizosphere and Plant Growth. Keister and Cregan (eds). Kluwer Academic Publ., Dordrecht, the Netherlands. pp: 61-71. [ Links ]

Recibido: Diciembre de 2004; Aprobado: Agosto de 2005

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons