SciELO - Scientific Electronic Library Online

 
vol.40 número1Componentes de varianza de híbridos de maíz evaluados en la faja maicera de los Estados UnidosCinética de acumulación y distribución de flavonoides en guayaba (Psidium guajava L.) índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Agrociencia

versión On-line ISSN 2521-9766versión impresa ISSN 1405-3195

Agrociencia vol.40 no.1 Texcoco ene./feb. 2006

 

Fitotecnia

Determinación del estado de crecimiento de cultivos usando la transformada de Hough de las reflectividades del follaje

Fernando Paz-Pellat1 

Enrique Palacios-Velez1 

Enrique Mejía-Saenz1 

Mario Martínez-Menes1 

Luis A. Palacios-Sánchez1 

1Hidrociencias. Campus Montecillo. Colegio de Postgraduados. 56230. Montecillo, Estado de México. México. (pellat@colpos.mx) (mejiasae@colpos.mx)


Resumen

Se analizan los patrones de reflectividad del follaje de un sistema suelo-vegetación, utilizando diferentes transformaciones de las bandas espectrales del rojo e infrarrojo espectral, primero a uno paramétrico, el cual después es transformado a uno meta-paramétrico. Este último espacio caracteriza en forma total las curvas iso-IAF del follaje de un cultivo en crecimiento. La metodología propuesta se valida usando simulaciones generadas con el modelo SAIL de transferencia de radiación en el follaje.

Palabras clave: Bandas del rojo e infrarrojo cercano; estimación del IAF; patrones espectrales; transformada de Hough

Abstract

Canopy reflectance patterns in a soil crop vegetation system are studied using different transformations of red and near infrared spectral bands, first to a parametric space, which is transformed into a meta-parametric space. The latter space completely characterizes the LAI (iso-LAI) curves and defines the crop growth stage. This can be used algorithmically to estimate the LAI for a growing crop. The proposed methodology is validated by simulations generated with the SAIL model for radiation transfer in the canopy.

Key words: Red and near infrared bands; LAI estimation; spectral patterns; Hough transform

Texto completo disponible sólo en PDF.

AGRADECIMIENTOS

Este trabajo fue realizado con el apoyo del CONACYT, convenio CONACYT-2002-C01-41792, del proyecto “Agricultura Asistida por Sensores Remotos”.

LITERATURA CITADA

Bausch, W. C. 1993. Soil background effects on reflectance-based crop coefficients for corn. Remote Sensing Environ. 46: 213-222. [ Links ]

Duda, R. O., and P. E. Hart. 1973. Pattern Classification and Scene Analysis. John Wiley & Sons. New York. 143 p. [ Links ]

Gausman, H. W., W. A. Allen, C. L. Wiegand, D. E. Escobar, R. R. Rodriguez, and A. J. Richardson. 1973. The leaf mesophylls of twenty crops, their light spectra, and optical and geometrical parameters, USDA Technical Bulletin 1465. 59 p. [ Links ]

Goel, N. S. 1988. Models of vegetation canopy reflectance and their use in the estimation of biophysical parameters from reflectance data. Remote Sensing Rev. 4: 1-222. [ Links ]

Huete, A. R. 1987. Soil-dependent spectral response in a development plant canopy. Agron. J. 79: 61-68. [ Links ]

Huete, A. R., R. D. Jackson, and D. F. Post. 1985. Spectral response of a plant canopy with different soil backgrounds. Remote Sensing Environ. 17: 35-53. [ Links ]

Knyazikhin, Y., J. V. Martonchik, R. B. Myneni, D. J. Diner, and S. W. Running. 1998a. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J. Geophysical Res. 103: 32257-32275. [ Links ]

Knyazikhin, Y. , J. V. Martonchik , D. J. Diner , R. B. Myneni, M. Verstraete, B. Pinty, and N. Gobron. 1998b. Estimation of vegetation canopy leaf area index and fraction of absorbed photosyntheticallly active radiation from atmosphere-correct MISR data. J. Geophysical Res. 103: 32239-32256. [ Links ]

Myneni, R. B., J. Ross, and G. Asrar. 1989. A review of the theory of photon transport in leaf canopies in slab geometry. Agric. Forest Meteorology 45: 1-165. [ Links ]

Tucker, C. J. 1979. Red and photographics infrared linear combination for monitoring vegetation. Remote Sensing Environ. 8: 127-150. [ Links ]

Verhoef, W. 1984. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sensing Environ. 16: 125-141. [ Links ]

Verstraete, M. M., and B. Pinty . 1996. Designing optical spectral indexes for remote sensing applications. IEEE Trans. Geoscience and Remote Sensing 34: 1254-1265. [ Links ]

Recibido: Mayo de 2004; Aprobado: Agosto de 2005

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons